EP-86, 6.6W/3.3V/2A PoE PD (EPR-86) Datasheet by Power Integrations

gluon-"F IN TEGHA TIONS Summary and Features
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Title
Engineering Prototype Report for EP-86 –
6.6 W Multi-Class Powered Device (PD) for
Power over Ethernet (PoE) Using
DPA-Switch® (DPA423G)
Specification Input: 33-57 VDC, Output: 3.3 V / 2.0 A
Application PoE Class 2 PD – Including IEEE802.3af
Compliant Interface Circuit
Author Power Integrations Applications Department
Document
Number EPR-86
Date April 13, 2006
Revision 1.1
Summary and Features
Meets IEEE802.3af requirements according to University of New Hampshire
Interoperability Consortium (UNH-IOC) test results, for Class 1–3 PoE PDs
DPA-Switch PWM controller with integrated 220 V power MOSFET switch
Under-voltage (UV) and overvoltage (OV) shutdown functions
Auto-recovering, hysteretic thermal shutdown
Auto-restart function: protects against short-circuit and open loop faults
No-load regulation achieved by cycle skipping
Fully integrated soft-start minimizes start-up stress and overshoot
Externally programmed ILIMIT scales with VIN for power limiting
Lossless MOSFET current sense eliminates external sensing components
Small footprint 3.1" × 1", low overall height 0.45" (excluding RJ-45 connector)
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 2 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Table Of Contents
1 Introduction.................................................................................................................3
2 Power Supply Specification ........................................................................................4
3 Schematic...................................................................................................................5
4 Circuit Operation.........................................................................................................6
4.1 General ................................................................................................................6
4.2 DPA-Switch Primary.............................................................................................6
4.3 Output Rectification ..............................................................................................6
4.4 Output Feedback..................................................................................................6
4.5 PoE Interface Circuit Description..........................................................................7
4.6 Wide Hysteresis Under-Voltage Lockout..............................................................8
5 Bill of Materials .........................................................................................................10
6 Layout.......................................................................................................................12
7 Transformer Design Spreadsheet.............................................................................13
8 Transformer Specification.........................................................................................15
8.1 Transformer Winding..........................................................................................15
8.2 Electrical Specifications......................................................................................15
8.3 Materials.............................................................................................................15
8.4 Transformer Build Diagram ................................................................................16
8.5 Transformer Construction...................................................................................16
9 Performance Data ....................................................................................................17
9.1 Efficiency............................................................................................................17
9.2 Load Regulation .................................................................................................18
9.3 Line Regulation ..................................................................................................18
9.4 Overload Output Current ....................................................................................19
10 Waveforms............................................................................................................20
10.1 Drain Voltage and Current, Full-Load Operation ................................................20
10.2 Output Voltage Start-Up Profile..........................................................................20
10.3 Load Transient Response (75% to 100% Load Step) ........................................21
10.4 Output Ripple Measurements.............................................................................22
10.4.1 Ripple Measurement Technique ................................................................22
10.4.2 Output Ripple Measurements.....................................................................23
11 Revision History ....................................................................................................24
Important Note:
Although this board was designed to satisfy safety isolation requirements, it has not been
agency approved. Therefore, please take the appropriate safety precautions.
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 3 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
1 Introduction
This engineering report describes a PoE power supply designed around the DPA423G.
The supply can deliver 6.6 W continuously, from an input voltage range of 33 VDC to
57 VDC.
The following design information is provided: the power supply specification, circuit
diagrams, a complete bill of materials, the results of the PIXls spreadsheet file that was
used to design the supply and detailed information on the design and construction of the
transformer. Data and test results that document the performance of the supply under
various line and load conditions are also included.
Figure 1 – Populated Circuit Board Top View.
Figure 2 – Populated Circuit Board Bottom View.
Description Symbol Min Typ Max Uniis Commem VIN uv oFF Poul FAULT c
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 4 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
2 Power Supply Specification
Description Symbol Min Typ Max Units Comment
Input
Voltage VIN 33 48 57 VDC
Under-Voltage ON VIN_UV_ON 42 VDC
Under-Voltage OFF VIN_UV_OFF 33 VDC
Output
Output Voltage 1 VOUT1 3.135 3.3 3.465 V ± 5%
Output Ripple Voltage 1 VRIPPLE1 35 mVp-p 20 MHz bandwidth
Output Current 1 IOUT1 0 2 A
Output Peak Current 1 IOUT1_PK 2.5 A
Total Output Power
Average Output Power POUT1 6.6 W
Average Output Power POUT_FAULT 8.6 W R6 = 10.2
Full Load Efficiency η 73 %
Environmental
Conducted EMI Meets CISPR22B / EN55022B
Safety
Designed to meet IEC950, UL1950
Class II
Ambient Temperature TAMB 0 40
oC
3 Z, x. H 1 u; N E 9 w w A; 1 n a a _ a m m a z 8 s «3% an L x m W En m [j _ In 1 . , 0 V _\‘ ‘ “a, s: a... s m 1 23 2:5 1 a sea 8 33% a a. 5 >3" :2 iii: La «2% E a :2 MW a: «2.3 :9 a 2) 5 z»: a} _ E .2 3 2.. m3 E «awn a . H H E H e Lxfim H H g H m E 1 N in." > r ; >9 m <_ sela="" .29355="" .2="" 1%.="" :m="" ,="" 32="" 2::="" 55:3="" 8="" :1...="" eu="" 8="" z="" “se—w="" s,="" ,2:="" e="" as...="" 3="">
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 5 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
3 Schematic
Figure 3 – Schematic.
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 6 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
4 Circuit Operation
4.1 General
A flyback topology was used to minimize circuit board size, parts count and cost. This
topology also provides excellent operating efficiency across the input voltage range.
4.2 DPA-Switch Primary
The DPA423G IC implements PWM control of the internal power MOSFET and initiates a
soft start-up function when it first powers up. The IC also monitors die temperature as
part of its over-temperature protection function and also monitors the input voltage as
part of its under-voltage detection and overvoltage shutdown functions. The integrated
220 V MOSFET provides excellent switching characteristics at the selected 400 kHz
operating frequency. The MOSFET and controller consume very little power, giving good
efficiency across the entire input voltage operating range.
Diodes D3 through D9 ensure that the incoming DC input voltage is correctly polarized.
Capacitors C1 and C2 and inductor L1 form a low-cost pi (π) filter that attenuates
conducted EMI noise, to keep it from being passed to the incoming line.
Resistors R4 and R6 program the internal current limit of the DPA423G, so that it
reduces as the input voltage increases. This helps to keep the variance of the maximum
output overload current below 5%, across the entire input voltage range.
The IC’s integrated MOSFET is protected from overvoltage stresses that could damage it
(during a line surge) by a primary-side Zener diode clamp (VR3). Zener diode VR3 does
not conduct under normal operating conditions.
The primary bias winding provides CONTROL pin current after start-up. Diode D2
rectifies the bias winding voltage, while R8 and C11 attenuate high frequency switching
noise and reduce the peak charging of the bias voltage.
4.3 Output Rectification
The secondary winding voltage is rectified by a low-loss Schottky diode (D11). Low ESR,
tantalum output capacitors, C7 and C8, filter the output voltage. The LC output filter (L2,
C9 and C10) further attenuates switching noise and ripple from the output voltage.
4.4 Output Feedback
Resistor divider (R12 and R13) senses the output voltage and feeds it into the reference
pin of a 1.24 V reference IC (U4). The conduction of U4 pulls current through the LED of
optocoupler U5, which controls the conduction of its phototransistor (U5-B).
The phototransistor modulates the current that flows into the CONTROL pin of U1. Since
the DPA-Switch is a current-to-duty-cycle converter, it uses the varying CONTROL pin
current to pulse-width modulate the duty cycle of the MOSFET switch. Resistor R10 sets
the gain of U4, while R11 and C13 compensate for the variation in gain of U4 over the
frequency range of the feedback loop’s bandwidth (about 10 kHz). Feedback
0.80 0.60 Current (mA) .0 ‘6 020 0.00 cwass‘ C‘assz 05533 - - - - DeldeIn - Detect Max 2315 kg ”494mm! I 7 Daecuon Voltage Range 26.5 ksz 0 2 4 6 S 10 12 Voltage (V)
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 7 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
compensation is required to ensure stable operation of the supply and optimum response
to line and load transients. Capacitor C12 performs a soft-finish function that prevents
the output voltage from overshooting the regulation set point during initial startup of the
converter.
4.5 PoE Interface Circuit Description
See DI-88 for a full description. Resistor R26 provides the correct impedance for the
detection phase of PD operation.
Figure 4 – Detection Impedance V-I curve.
The classification circuit is enabled when Zener diode VR6 conducts (above 11 VDC).
Transistor Q9 controls the bias current source programmed to approximately 350 µA by
resistor R21. This bias current source provides the minimum operating current to voltage
reference IC U6. The main classification current flowing through R20 generates a
voltage that is referenced to the internal reference (1.24 VDC) of U6 and that later closes
the loop by controlling the base drive of Q7. The value of the classification current
source is determined by the value of the voltage on the reference pin of U6 divided by the
value of R20 in ohms.
W W mA mA Ohms 0 0.44 12195 0.5 4 - 1 0,44 3,84 9 12 133 2 3.84 6.49 17 20 69.8 3 649 12.95 26 30 45 3 1 I g C‘assz ; 30 1 was” elasswax E C‘assmcanon 3 33:2? 5' 26 CIassSMln § 5 22 ° E‘Pffzfli‘. us I/ 'c'ra'sgz'w 14 IO 12 14 16 18 20 22 Voltage (V)
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 8 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 5 – Table of PoE Classifications and Power Levels.
Figure 6 – Classification Current (Class 2: R34 = 69.8 ; Class 3: R34 = 45.3 ).
Zener diode VR5 conducts above 27 VDC, raising the gate voltage on the pass-switch
MOSFET (Q8), turning it on when the gate-threshold voltage is exceeded. Pull-down
resistor R25 limits the current through VR5 while pull-down resistor R24 keeps Q8 turned
off, unless it is being actively driven on. Zener diode VR4 limits the maximum gate-to-
source voltage on Q8 to 15 V. When VR5 conducts, it also turns on Q6 through R23.
Transistor Q6 pulls down on the base of Q7, which turns off the main classification
current source (although the bias current source of 350 µA will continue to conduct).
4.6 Wide Hysteresis Under-Voltage Lockout
If there were no other components connected to the L pin, then resistor R5 would set the
under-voltage turn-on threshold to approximately 35 VDC and the turn-off threshold to
approximately 33 VDC.
However, in the case of PoE, the turn-on voltage is much higher than the turn-off voltage.
This requires more under-voltage hysteresis. When the power supply is operating
normally, the bias voltage is approximately 14 VDC. Resistors R15 and R16 form a
voltage divider that turns off the base of Q2, once the DC-DC converter has begun
switching and the bias voltage is present. At start-up, when the bias voltage is absent,
ON ‘qum ‘avIom I I Dehuli DPANSWIIEI' OFF 0 so 75 100 y 150 Il I 131 pA 1 1 (35 IIA I I I I ON ‘ ‘ I I , no HA I I I—> I I I DPAMMh I wllh added I uv Hysleleula I I on: 0 25 50) 75 100 125 150 ll 5“ I“ FHCM9DSEDE L Current (uA)
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 9 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Q2 is on, and sinks additional current from the resistor (R5) that connects the L pin to the
DC input voltage. The value of R14 was selected so that an extra 10 µA is drawn at
startup, which increases the turn-on threshold voltage to 41 VDC typical. However,
because Q2 turns off after start-up, the UV turn-off threshold stays at 34 VDC (see DI-
101 for more details).
Figure 7 – L-pin current without and with the widened UV hysteresis circuit.
C7, C8, ()9
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 10 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5 Bill of Materials
Item Qty. Ref. Description Mfg Part Number Mfg
1 2 C1, C2 470 nF, 100 V, Ceramic, X7R, 1210 ECJ-4YB2A474K Panasonic
2 1 C3 47 pF, 100 V, Ceramic, NPO, 0603 06031A470JAT2A AVX
3 1 C4 1000 pF, 1500V, 1808 1808SC102KAT1A AVX
4 2 C5, C13 100 nF 25 V, Ceramic, X7R, 0603 ECJ-1VB1E104K Panasonic
5 1 C6 22 µF, 10 V, Tant Electrolytic, SMD TAJA226K010R Kemet
6 3 C7, C8, C9 330 µF, 6.3 V, Tant Electrolytic, SMD T495X337K006AS Kemet
7 1 C10 1 µF, 16 V, Ceramic, X5R, 0603
GRM188R61C105KA
93D Murata
8 1 C11 1 µF, 25 V, Ceramic, X7R, 1206 ECJ-3YB1E105K Panasonic
9 1 C12 220 nF, 25 V, Ceramic, X7R, 0603 06033D224KAT2A AVX
10 1 D2
75 V, 0.2 A, Fast Switching, 50 ns, SOD-
323 1N4148WS-7 Diode Inc.
11 8
D3, D4,
D5, D6,
D7, D8,
D9, D10
100 V, 1 A, Rectifier, Glass Passivated, DO-
213AA (MELF) DL4002 Diodes Inc
12 1 D11 20 V, 4 A, Schottky, SMD, DO-214AB SL42-9B Vishay
13 1 J1 R/A, RJ45 Non-shielded, PCBM RJHS-5080 Amphenol Canada
14 2 J2-1, J2-2 Zierick output pins Zierick
15 1 L1 10 µH, 0.85 A HM79-10100LFTR7 B.I.Technologies
16 1 L2 1 µH, 1.9 A HM79-101R0LFTR7 B.I.Technologies
17 1 Q2
PNP, Small Signal BJT, 40 V, 0.2 A, SOT-
323 MMST3906-7 Diodes Inc
18 3
Q4, Q5,
Q7
NPN, Small Signal BJT, 80 V, 0.5 A, SOT-
23 MMBTA06LT1 On Semiconductor
19 1 Q6
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-
323 MMST3904 Diodes Inc
20 1 Q8 100 V, 1.15 A, 250 m, N-Channel, SOT-23 SI2328DS Vishay
21 1 R4 1.00 M, 1%, 1/16 W, Metal Film, 0603 ERJ-3EKF1004V Panasonic
22 1 R5 649 k, 1%, 1/8 W, Metal Film, 0805 ERJ-6ENF6493V Panasonic
23 1 R6 10.00 k, 1%, 1/16 W, Metal Film, 0603 ERJ-3EKF1002V Panasonic
24 1 R7 10 , 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ100V Panasonic
25 1 R8 100 , 1%, 1/16 W, Metal Film, 0603 ERJ-3EKF1000V Panasonic
26 1 R9 5.1 , 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ5R1V Panasonic
27 1 R10 75 , 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ750V Panasonic
28 1 R11 1 k, 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ102V Panasonic
29 1 R12 33.2 k, 1%, 1/8 W, Metal Film, 0805 ERJ-6ENF3322V Panasonic
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 11 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
30 1 R13 20 k, 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ203V Panasonic
31 1 R14 174 k, 1%, 1/16 W, Metal Film, 0603 ERJ-3EKF1743V Panasonic
32 1 R15, R16 10 k, 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ103V Panasonic
35 1 R20 69.8 , 1%, 1/16 W, Metal Film, 0603 ERJ-3EKF69R8V Panasonic
36 1 R21 2 k, 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ202V Panasonic
37 2 R22, R23 100 k, 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ104V Panasonic
38 1 R24 220 k, 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ224V Panasonic
39 1 R25 51 k, 5%, 1/10 W, Metal Film, 0603 ERJ-3GEYJ513V Panasonic
40 1 R26 24.9 k, 1%, 1/8 W, Metal Film, 0805 ERJ-6ENF2492V Panasonic
41 1 T1
Bobbin, ER14.5/6, Horizontal, 10 pins, SMD
HM00-A5861LF
DA2062-ALD
SIL6029
LSTA30825
SNX1393
YC-1404S
B.I Technologies
Coilcraft
Hical
LiShin
Santronics
Ying Chin
42 1 U1 DPA-Switch, DPA423G, SMD-8 DPA423G Power Integrations
43 1 U4
1.24 V Shunt Regulator IC, 1%, -40 to
85 °C, SOT23-5 LMV431AIM5
National
Semiconductor
44 1 U5
Optocoupler, 80 V, CTR 200-400%, 4-Mini
Flat PC357N3T Sharp
45 1 U6
1.24 V Shunt Regulator IC, 1%, -40 to
85 °C, SOT23-5 LMV431AIM5
National
Semiconductor
46 1 VR3 150 V, 5 W, 5%, DO214AC (SMB) SMBJ150A Diodes, Inc
47 1 VR4 15.0 V, 5%, 150 mW, SOD-323 BZT52C15T-7 Diodes, Inc
48 1 VR5 27.0 V, 5%, 150 mW, SOD-323 MAZS2700ML Panasonic-SSG
49 1 VR6 11 V, 5%, 500 mW, DO-213AA (MELF) ZMM5241B-7 Diodes Inc
50 1 - PCB, EP-86, REV B
n J _ _ _ _ _ L
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 12 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
6 Layout
Figure 8 – PCB Layout Top Side. Figure 9 – PCB Layout Bottom Side.
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 13 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
7 Transformer Design Spreadsheet
DCDC_DPASwitch_Flyback_071405; Rev.2.7;
Copyright Power Integrations 2005 INPUT INFO OUTPUT UNITS
DPASwitch_Flyback_071405 - Continuous/Discontinuous
mode Spreadsheet. Copyright 2005 Power Integrations
ENTER APPLICATION VARIABLES DC-DC Converter
VDCMIN 36 Volts Minimum DC Input Voltage
VDCMAX 57 Volts Maximum DC Input Voltage
VO 3.3 Volts Output Voltage (main)
PO 6.6 Comment Watts
Verify temperature rise for continuous power. P and G
packages may be thermally limited
n 0.8 Efficiency Estimate
Z0.7 Loss Allocation Factor, (0.7 Recommended)
VB 14 Volts Bias Voltage (Recommended between 12V and 18V)
UV AND OV PARAMETERS
min max
VUVOFF 30.0 33.1 Volts Minimum undervoltage On-Off threshold
VUVON 32.2 34.7 Volts Maximum undervoltage Off-On threshold (turn-on)
VOVON 74.9 - Volts Minimum overvoltage Off-On threshold
VOVOFF 94.7 Volts Maximum overvoltage On-Off threshold (turn-off)
RL 619.0 k-Ohms
ENTER DPASWITCH VARIABLES
DPASWITCH DPA423G 16VDC 36 VDC
Chosen Device DPA423G Power O
u
6W 13W
ILIMITMAX 1.16 1.34 Amps From DPASWITCH Data Sheet
Frequency FEnter 'F' for fS = 400KHz and 'L' for fS = 300KHz
fS 375000 Hertz DPASWITCH Switching Frequency
VOR 38 38 Volts Reflected Output Voltage
KI 0.7 0.7 Current Limit Reduction Factor
ILIMITEXT 0.812 Amps Minimum External Current limit
RX 11.0 k-Ohms
Resistor from X pin to source to set external current
limit
VDS 1 Volts DPASWITCH on-state Drain to Source Voltage
VD 0.5 Volts Output Winding Diode Forward Voltage Drop
VDB 0.7 Volts Bias Winding Diode Forward Voltage Drop
KRP/KDP 0.62
Ripple to Peak Current Ratio (0.2 < KRP < 1.0 : 1.0<
KDP<6.0)
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type ER14.5
Core Manuf
Bobbin Manuf
Core ER14.5 P/N: ER14.5-3F3-S
Bobbin ER14.5_Bobbin P/N: CPVS-ER14.5-1S-10P
AE 0.176 cm^2 Core Effective Cross Sectional Area
LE 1.9 cm Core Effective Path Length
AL 1400 nH/T^2 Ungapped Core Effective Inductance
BW 1.9 mm Bobbin Physical Winding Width
M0mm
Safety Margin Width (Half the Primary to Secondary
Creepage Distance)
L 2 Number of Primary Layers
NS 2 Number of Secondary Turns
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 14 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX 0.52 Maximum Duty Cycle
IAVG 0.23 Amps Average Primary Current
IP 0.64 Amps Peak Primary Current
IR 0.40 Amps Primary Ripple Current
IRMS 0.33 Amps Primary RMS Current
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP 119 uHenries Primary Inductance
NP 20 Primary Winding Number of Turns
NB 8 Bias Winding Number of Turns
ALG 297 nH/T^2 Gapped Core Effective Inductance
BP 2739 Gauss
Peak Flux density during transients (Limit to 3000
Gauss)
BM 2152 Gauss Maximum Flux Densit
y
BAC 667 Gauss
AC Flux Density for Core Loss Curves (0.5 X Peak to
Peak)
ur 1203 Relative Permeability of Ungapped Core
LG 0.06 mm Gap Length (Lg >> 0.051 mm)
BWE 3.8 mm Effective Bobbin Width
TRANSFORMER SECONDARY DESIGN PARAMETERS
ISP 6.38 Amps Peak Secondary Current
ISRMS 3.15 Amps Secondary RMS Current
IO 2.00 Amps Power Supply Output Current
IRIPPLE 2.43 Amps Output Capacitor RMS Ripple Current
VOLTAGE STRESS PARAMETERS
VDRAIN 157 Volts
Maximum Drain Voltage (Includes Effect of Leakage
Inductance)
PIVS 9 Volts Output Rectifier Maximum Peak Inverse Voltage
PIVB 36 Volts Bias Rectifier Maximum Peak Inverse Voltage
ADDITIONAL OUTPUTS
V_OUT2 Volts 2nd Output Voltage
VD_OUT2 Volts 2nd Output - Diode Forward voltage
N_OUT2 0.00 2nd Output - Turns
PIV_OUT2 0 Volts 2nd Output - Diode Peak Inverse Voltage
V_OUT3 Volts 3rd Output Voltage
VD_OUT3 Volts 3rd Output - Diode Forward voltage
N_OUT3 0.00 3rd Output - Turns
PIV_OUT3 0 Volts 3rd Output - Diode Peak Inverse Voltage
I_OUT2 Amps 2nd Output - Output Current
I_OUT3 Amps 3rd Output - Output Current
Negative Output N/A
If negative output exists enter Output number; eg: If
VO2 is negative output, enter 2
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 15 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
8 Transformer Specification
8.1 Transformer Winding
4
W3: 2 T
2 x 28 AWG
1
W4: 10T
1 x 34 AWG
2
W2: 8T
1 x 34 AWG
5
9,10
W1: 10T
1 x 34 AWG
3
6,7
Figure 10 – Transformer Electrical Diagram.
8.2 Electrical Specifications
Electrical Strength 1 second, 60 Hz, from Pins 1-5 to Pins 6-10 1500 VDC
Primary Inductance Pins 1-3, all other windings open 120 µH, ±10%
Resonant Frequency Pins 1-3, all other windings open 7.5 MHz (Min.)
Primary Leakage Inductance Pins 1-3, with Pins 6/7-9/10 shorted 3.0 µH (Max.)
8.3 Materials
Item Description
[1] Core: ER14.5, Ferroxcube 3C96, 3F3 (or equivalent), ALG = 312 nH/T2
[2] Bobbin: ER14.5, 10 pin
[3] Magnet Wire: #34 AWG, Double Coated (Heavy Nyleze)
[4] Magnet Wire: #28 AWG, Double Coated (Heavy Nyleze)
[5] Tape: 3M 1298 Polyester Film (or equivalent), 1.8 mm wide
[6]
(optional) Core Clamp ER14.5 Ferroxcube CLM14.5
[7] Varnish (DIPPED ONLY, NOT VACUUM IMPREGNATED)
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 16 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
8.4 Transformer Build Diagram
W2
Tape
4
3
2 W1
Tape
Tape
5
1
2
W4
Tape
W3
Tape
9
,
10
6,7
Figure 11 – Transformer Build Diagram.
8.5 Transformer Construction
Bobbin Preparation Arrange bobbin & rotation such that primary start/finish wires do not overlap.
W1 Start at Pin 3. Wind 10 turns of item [3] in 1 layer. Bring finish lead back and
terminate on Pin 2.
W2 Starting at Pin 4, wind 8 turns of item [3]. Spread turns evenly across bobbin in
a single layer. Bring finish lead back and terminate on Pin 5.
Tape Use one layer of item [5] for basic insulation.
W3 Start at Pins 9 and 10. Wind 2 turns of bifilar item [4] in 1 layer. Bring finish
lead back and terminate on Pins 6 and 7.
Tape Use one layer of item [5] for basic insulation.
W4 Continue from Pin 2. Wind 10 turns of item [3] in 1 layer. Bring finish lead back
and terminate on Pin 1.
Outer Wrap Use one layer of item [5] for basic insulation.
Final Assembly Assemble and secure (glue or clamp, item [6]) core halves.
Dip varnish item [7] and cure.
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 17 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
9 Performance Data
All measurements were taken at room temperature utilizing a DC input source and DC
dynamic loads (except where resistive loads are specified). Input and output voltages
and current were measured with dedicated digital multi-meters (DMMs).
9.1 Efficiency
Figure 12 Efficiency vs. Line and Load, Room Temperature.
40%
50%
60%
70%
80%
02468
Pout (W)
Efficiency (
%
36 VDC
48 VDC
57 VDC
+ + H
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 18 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
9.2 Load Regulation
Figure 13 Load Regulation, Room Temperature.
9.3 Line Regulation
Figure 14 Line Regulation, Room Temperature.
95.0%
97.5%
100.0%
102.5%
105.0%
02468
Pout (W)
Regulation (%)
3V3 36 VDC
3V3 57 VAC
95.0%
97.5%
100.0%
102.5%
105.0%
30 40 50 60
Vin (VDC)
Regulation (%)
3.3V FL
3.3V LL
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 19 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
9.4 Overload Output Current
The DC output load current was recorded just prior to the auto-restart operation at
various input line voltages. Performance was measured for various values of resistor R6.
Figure 15 Overload Output Current vs. Line Voltage for Different Values of R6,
Room Temperature.
0.0
1.0
2.0
3.0
4.0
30 40 50 60
Vin (VDC)
Output Current (A)
3.3 V R6 = 10.0 k
3.3 V R6 = 10.2 k
3.3 V R6 = 10.5 k
3.3 V R6 = 8.66 k
Inns/mm um“) . mus/min: Inns. mum/g mm 3pm., 1 unm47 ; 7 77 7 41.511» . fl LV‘LJLW’L y ‘ l 4 4 ‘ I ‘ y I .‘ > 1‘ 7', ¥ 7 L, , L” 77 ‘ ‘ \ nun/mm) m‘uu mwaml- awn fry/£401 mam mum/s (:23; “mm, ,3 7 7 7 7 77 7 "mm, 1 7,7, 7,, / ‘ ‘
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 20 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
10 Waveforms
10.1 Drain Voltage and Current, Full-Load Operation
Figure 16 – 36 VDC, Full Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 50 V, 1 µs / div.
Figure 17 – 57 VDC, Full Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 50 V, 1 µs / div.
10.2 Output Voltage Start-Up Profile
Figure 18 – Start-Up Profile, 36 VDC, No Load
(worst-case).
Upper: VOUT, 1 V / div.
Lower: VDRAIN, 50 V, 1 µs / div.
Figure 19 – Start-Up Profile, 57 VDC, No Load
(worst-case).
Upper: VOUT, 1 V / div.
Lower: VDRAIN, 50 V, 1 µs / div.
nus/mm mm m1; mus/av mum-v nuns! ‘ 25-4 3 mm Vmemij 7 7 A w ‘ V mm: 7.» nun-v In I: am u... .32 my
13-Apr-2006 EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device
Page 21 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
10.3 Load Transient Response (75% to 100% Load Step)
In the figures shown below, signal averaging was used to better enable viewing of the
load transient response. The oscilloscope was triggered using the load current
step as a trigger source. Since the output switching is random with respect
to the load transient, contributions to the output ripple from these sources will
average out, leaving the contribution only from the load step response.
Figure 20 – Transient Response,
36 VDC, 75-100-75% Load Step.
Upper: Load Current, 1 A / div.
Lower: Output Voltage,
20 mV, 500 µs / div.
Figure 21 – Transient Response,
57 VDC, 75-100-75% Load Step.
Upper: Load Current, 1 A / div.
Lower: Output Voltage,
20 mV, 500 µs / div.
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 22 of 28
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
10.4 Output Ripple Measurements
10.4.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signal pickup. Details of the probe modification are provided
in Figures 22 and 23.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V
aluminum electrolytic. Since the aluminum electrolytic type capacitor is polarized,
proper polarity must be observed when connecting it to the output (see below).
Figure 22 – Oscilloscope Probe Prepared for Ripple Measurement (End cap and ground lead removed).
Figure 23 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added).
Probe Ground
Probe Tip
manna/m mm: mums/s “In/aw mas/mm mm! mas/s Slur/av Md 2 {anal v: Hume, was/M r j "um! p.4- 7:. ma mu 2 am Ma. —74 my mm v-a 25 mm Inn 2 um n... 72: nut wan/av ‘ nan/m ‘ rum/Inna um... flogwi a 1
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 23 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
10.4.2 Output Ripple Measurements
Figure 24 – Ripple, 36 VDC, Full Load.
Upper: 50 µs / div, 10 mV / div.
Lower: 2 µs / div, 10 mV / div.
Figure 25 – Ripple, 48 VDC, Full Load.
Upper: 50 µs / div, 10 mV / div.
Lower: 2 µs / div, 10 mV / div.
Figure 26 – Ripple, 57 VDC, Full Load.
Upper: 50 µs / div, 10 mV / div.
Lower: 2 µs / div, 10 mV / div.
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 24 of 28
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
11 Revision History
Date Author Revision Description & changes
January 3, 2006 RM/LN/ME 1.0 Initial release
April 13 2006 RM 1.1 Updated photo, layout,
schematic and BOM
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 25 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Notes
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 26 of 28
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Notes
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 27 of 28
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Notes
EP-86 – 6.6 W, 3.3 V, 2 A PoE Powered Device 13-Apr-2006
Page 28 of 28
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS
MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be
covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power
Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its
customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield,
Filterfuse, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective
companies. ©Copyright 2006 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@powerint.com
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3910
Fax: +49-89-5527-3920
e-mail: eurosales@powerint.com
JAPAN
Keihin Tatemono 1st Bldg
2-12-20
Shin-Yokohama, Kohoku-ku,
Yokohama-shi, Kanagawa ken,
Japan 222-0033
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail:
japansales@powerint.com
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
taiwansales@powerint.com
CHINA (SHANGHAI)
Rm 807-808A,
Pacheer Commercial Centre,
555 Nanjing Rd. West
Shanghai, P.R.C. 200041
Phone: +86-21-6215-5548
Fax: +86-21-6215-2468
e-mail: chinasales@powerint.com
INDIA
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India 560080
Phone: +91-80-5113-8020
Fax: +91-80-5113-8023
e-mail: indiasales@powerint.com
KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail:
koreasales@powerint.com
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey, GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-140
Fax: +44 (0) 1252-727-689
e-mail: eurosales@powerint.com
CHINA (SHENZHEN)
Room 2206-2207, Block A,
Elec. Sci. Tech. Bldg.
2070 Shennan Zhong Rd.
Shenzhen, Guangdong,
China, 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: chinasales@powerint.com
ITALY
Via Vittorio Veneto 12
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail: eurosales@powerint.com
SINGAPORE
51 Newton Road,
#15-08/10 Goldhill Plaza,
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
singaporesales@powerint.com
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
APPLICATIONS FAX
World Wide +1-408-414-9760