XC9141, XC9142 Series Datasheet by Torex Semiconductor Ltd

View All Related Products | Download PDF Datasheet
TOIREX | F O | O C L p F Bypass Swllch Func Output Capacitor .Ceramic CapaCitar Operating Ambient Temperature . -40“c~+85°c Package . SOT-25,UsP-GC,WL Environmentally Friendly . EU RaHS Camplian PLICATION CIRCUIT ITYPICAL PERFORMA CHARACTERISTICS xcsm 1mm xcamzma Lu: WHLLQHSEP QN=IDuFlGRM133mquueMl q=1owemlaa WU
1/34
XC9141/XC9142 Series
Load Disconnection Function, 0.8A Step-up DC/DC Converters
TYPICAL APPLICATION CIRCUIT
ETR04018-002
GreenOperation-compatible
TYPICAL PERFORMANCE
CHARACTERISTICS
GENERAL DESCRIPTION
XC9141/XC9142 series are synchronous step-up DC/DC converters with a 0.3(TYP.) N-channel driver transistor and a
0.3(TYP.) synchronous P-channel switching transistor built-in. A highly efficient and stable current can be supplied up to 0.8A
by reducing ON resistance of the built-in transistors.
The series are able to start operation under the condition which has 0.9V input voltage to generate 3.3V output voltage with a
100 load resistor, suitable for mobile equipment using only one Alkaline battery or one Nickel metal hydride battery.
The output voltage can be set from 1.8V to 5.5V (±2.0%) in steps of 0.1V.With the built-in oscillator, either 1.2MHz or 3.0MHz can
be selected for suiting to your particular application.
During the devices enter stand-by mode, A, D types prevent the application malfunction by CL Discharge Function which can
quickly discharge the electric charge at the output capacitor (CL). B, E types is able to drive RTC etc. by Bypass Switch Function
to maintain continuity between the input and output. C, F types is able to connect in parallel with other power supplies by Load
Disconnection Function which breaks continuity between the input and output.
FEATURES
Input Voltage Range : 0.65V6.0V
Fixed Output Voltage : 1.8V5.5V (0.1V increments)
Oscillation Frequency : 1.2MHz (±15%), 3.0MHz (±20%)
Input Current : 0.8A
Output Current : 500mA @VOUT=5.0V, VBAT=3.3V (TYP.)
350mA @VOUT=3.3V, VBAT =1.8V (TYP.)
Control Mode Selection
Load Transient Response
: PWM (XC9141 Series) or
Auto PWM/PFM (XC9142 Series)
: 100mV@VOUT=3.3V, VBAT =1.8V,
IOUT=1mA200mA(tr=5μs)
Protection Circuits : Over-current limit
Integral latch method (D,E,F type)
Output short-circuit protection (D,E,F type)
Functions : Soft-start
Load Disconnection Function (A,C,D,F type)
CL Auto Discharge Function (A,D type)
Bypass Switch Function (B,E type)
Output Capacitor : Ceramic Capacitor
Operating Ambient Temperature : -40+85
Package : SOT-25,USP-6C,WLP-6-01
Environmentally Friendly : EU RoHS Compliant, Pb Free
A
PPLICATIONS
Portable equipment
Beauty & health equipment
Wearable devices
Game & Hobby
PC Peripherals
Devices with 1~3 Alkaline,
1~3 Nickel Hydride, 1 Lithium and 1 Li-ion
L=4.7μH( LQH5B PN4 R7NT0 L)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
XC9141A33C / XC9142A33C
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Efficiency : EFFI [%]
Output Current : I
OUT
[mA]
V
BAT
=0.9V
V
BAT
=1.2V
V
BAT
=1.8V
V
BAT
=2.5V
solid line : XC9141
dotted line : XC9142
C
IN
=10μF
C
L
=10μF
L=4.7μH
V
OUT
GND
BAT
CE
Lx
V
BAT
CE
V
OUT
2/34
XC9141
/
XC9142 Series
BLOCK DIAGRAM
XC9141A/XC9142A type
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
* XC9141 series chooses only PWM control.
XC9141B/XC9142B type
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
* XC9141 series chooses only PWM control.
XC9142C type
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
OSC
RAMP Wave
Genera tor
Ph ase
Compensation
Buffe r
Driver
Vref wit h
Soft S tart
CE Controller
Lo gi c
Lo ad disco nn ect
Controller
Error Amp. PWM
com p ar ato r C
L
Di schar g e
CE
V
OUT
GND
Lx
R
FB1
R
FB2
FB
PWM/PFM
Con tr oller Lo gic
BA T
V
DD
MAX
V
OUT
V
DD
C
FB
Cur r ent sen se
V
OUT
OSC
RAMP Wave
Genera tor
Ph ase
Compensation
Buffe r
Driver
Vref wit h
Soft S tart
CE Controller
Lo gi c
Lo ad disco nn ect
Controller
Error Amp. PWM
com p ar ato r
CE
V
OUT
GND
Lx
R
FB1
R
FB2
FB
PWM/PFM
Con tr oller Lo gic
BA T
V
DD
MAX
V
OUT
V
DD
C
FB
Cur r ent sen se
Bypass SW
V
OUT
OSC
RAMP Wave
Genera tor
Ph ase
Compensation
Buffe r
Driver
Vref wit h
Soft S tart
CE Controller
Lo gi c
Lo ad disco nn ect
Controller
Error Amp. PWM
com p ar ato r
CE
V
OUT
GND
Lx
R
FB1
R
FB2
FB
PWM/PFM
Con tr oller Lo gic
BA T
V
DD
MAX
V
OUT
V
DD
C
FB
Cur r ent sen se
V
OUT
3/34
XC9141/XC9142
Series
BLOCK DIAGRAM (Continued)
XC9141D/XC9142D type
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
* XC9141 series chooses only PWM control.
XC9141E/XC9142E type
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.
* XC9141 series chooses only PWM control.
XC9142F type
* Diodes inside the circuits are ESD protection diodes and parasitic diodes
OSC
RAMP Wave
Genera tor
Ph ase
Compensation
Buffe r
Driver
Vref wit h
Soft S tart
CE Controller
Lo gi c
Lo ad disco nn ect
Controller
Error Amp. PWM
com p ar ato r C
L
Di schar g e
CE
V
OUT
GND
Lx
R
FB1
R
FB2
FB
PWM/PFM
Con tr oller Lo gic
BA T
V
DD
MAX
V
OUT
V
DD
C
FB
V
OUT
Cur r ent sen se
Short-circuit protection
La tch Time r
OSC
RAMP Wave
Genera tor
Ph ase
Compensation
Buffe r
Driver
Vref wit h
Soft S tart
CE Controller
Lo gi c
Lo ad disco nn ect
Controller
Error Amp. PWM
com p ar ato r
CE
V
OUT
GND
Lx
R
FB1
R
FB2
FB
PWM/PFM
Con tr oller Lo gic
BA T
V
DD
MAX
V
OUT
V
DD
C
FB
Bypass SW
V
OUT
Cur r ent sen se
Short-circuit protection
La tch Timer
OSC
RAMP Wave
Genera tor
Ph ase
Compensation
Buffe r
Driver
Vref wit h
Soft S tart
CE Controller
Lo gi c
Lo ad disco nn ect
Controller
Error Amp. PWM
com p ar ato r
CE
V
OUT
GND
Lx
R
FB1
R
FB2
FB
PWM/PFM
Con tr oller Lo gic
BA T
V
DD
MAX
V
OUT
V
DD
C
FB
V
OUT
Cur r ent sen se
Short-circuit protection
La tch Timer
E x09141®®®®®®® PWM comml x09142®®®®®®® PWMIPFM aummaxic switching comml
4/34
XC9141
/
XC9142 Series
PRODUCT CLASSIFICATION
Ordering Information
XC9141①②③④⑤⑥-⑦ PWM control
(*1) The ”-G” suffix indicates that the products are Halogen and Antimony free as well as being fully EU RoHS compliant.
XC9142①②③④⑤⑥-⑦ PWM/PFM automatic switching control
(*1) The ”-G” suffix indicates that the products are Halogen and Antimony free as well as being fully EU RoHS compliant.
DESIGNATOR ITEM SYMBOL DESCRIPTION
Type
A
Refer to Selection Guide
B
D
E
②③
Output Voltage
(XC9141A,B Type) 1855 Output voltage options e.g. 1.8V =1, =8
Output Voltage
(XC9141D,E Type) 2255 Output voltage options e.g. 2.2V =2, =2
Oscillation Frequency
C 1.2MHz
D 3.0MHz
⑤⑥-⑦(*1) Packages (Order Unit)
MR-G SOT-25 (3,000pcs/Reel)
ER-G USP-6C (3,000pcs/Reel)
0R-G WLP-6-01 (5,000pcs/Reel)
DESIGNATOR ITEM SYMBOL DESCRIPTION
Type
A
Refer to Selection Guide
B
C
D
E
F
②③
Output Voltage
(XC9142A,B,C Type) 1855 Output voltage options e.g. 1.8V =1, =8
Output Voltage
(XC9142D,E,F Type) 2255 Output voltage options e.g. 2.2V =2, =2
Oscillation Frequency
C 1.2MHz
D 3.0MHz
⑤⑥-⑦(*1) Packages (Order Unit)
MR-G SOT-25 (3,000pcs/Reel)
ER-G USP-6C (3,000pcs/Reel)
0R-G WLP-6-01 (5,000pcs/Reel)
TOREX
5/34
XC9141/XC9142
Series
PRODUCT CLASSIFICATION (Continued)
Selection guides
TYPE OUTPUT
VOLTAGE
CHIP
ENABLE
SOFT-
START
CURRENT
LIMIT
SHORT
PROTECTION
WITH LATCH
CL AUTO-
DISCHARGE
SHUTDOWN
OPTIONS
AT CE=L
A Fixed Yes Fixed Yes
(without latch ) No Yes
Complete Output
Disconnect(*2)
B Fixed Yes Fixed Yes
(without latch ) No No
Input-to-Output
Bypass(*2)
C(*1) Fixed Yes Fixed Yes
(without latch ) No No
Complete Output
Disconnect(*3)
D Fixed Yes Fixed Yes
(with integral latch) Yes Yes
Complete Output
Disconnect(*2)
E Fixed Yes Fixed Yes
(with integral latch) Yes No
Input-to-Output
Bypass(*2)
F(*1) Fixed Yes Fixed Yes
(with integral latch) Yes No
Complete Output
Disconnect(*3)
(*1) Type C,F is available for the XC9142 series only.
(*2) VOUT pin can not be connected to the different output pin such as another supply (AC adaptor).
(*3) VOUT pin can be connected to the different output pin such as another supply (AC adaptor).
m PIN CONFIGURATION j I: Q Q :I I: O O i [:1 j 4: I: O O
6/34
XC9141
/
XC9142 Series
PIN CONFIGURATION
PIN ASSIGNMENT
FUNCTION CHART
PIN NAME SIGNAL STATUS
CE L Stand-by
H Active
* Do not leave the CE pin open.
ABSOLUTE MAXIMUM RATINGS
Ta=25
PARAMETER SYMBOL RATINGS UNITS
BAT Pin Voltage VBAT -0.3+7.0 V
Lx Pin Voltage VLx -0.3+7.0 V
VOUT Pin Voltage VOUT -0.3+7.0 V
CE Pin Voltage VCE -0.3+7.0 V
Power Dissipation
SOT-25
Pd
600 (PCB mounted)
mW
USP-6C 1000 (PCB mounted)
WLP-6-01 700 (PCB mounted)
Operating Ambient Temperature Topr -40+85
Storage Temperature Tstg -55+125
PIN NUMBER PIN NAME FUNCTIONS
SOT-25 USP-6C WLP-6-01
1 3 3 CE Chip Enable
2 2 2 GND Ground
3 1 1 BAT Power Input
4 6 6 VOUT Output Voltage
5 5 5 Lx Switching
- 4 4 GND Ground
*The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and
metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to
other pins, it should be connected to the GND (No.2, 4) pin.
*GND are standard voltage for all of the voltage.
132
5 4
V
OUT
Lx
CE GND BAT USP-6C
BOTTOM VIEW
2 GND
1 BAT
3 CE
V
OUT
6
Lx 5
GND
4
SOT-25
TOP VIEW
2 GND
1 BAT
3 CE
V
OUT
6
Lx 5
GND
4
WLP-6-01
BOTTOM VIEW
TOREX
7/34
XC9141/XC9142
Series
ELECTRICAL CHARACTERISTICS
XC9141/XC9142 Series
Ta=25
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT
Input Voltage VBAT - - 6.0 V
Output Voltage VOUT Voltage to start oscillation while
VOUT=VOUT(T) ×1.03VOUT(T) ×0.97 <E-1> <E-2> <E-3> V
Operation Start Voltage VST1 RL=1k - - 0.90 V
Operation Hold Voltage VHLD RL=1k - 0.65 - V
Quiescent Current
(XC9142) Iq VOUT=VBAT= VOUT(T)+0.5V
fOSC=1.2MHz - 17.0 30.0
μA
fOSC=3.0MHz - 26.0 40.0
Supply Current IDD VOUT=VBAT= VOUT(T)-0.2V
fOSC=1.2MHz - <E-4> 1.500
mA
fOSC=3.0MHz - <E-5> 3.000
Oscillation Frequency fOSC VBAT= VOUT(T)×0.5
IOUT=100mA
fOSC=1.2MHz 1.02 1.20 1.38
MHz
fOSC=3.0MHz 2.40 3.00 3.60
Maximum Duty Cycle DMAX VBAT=1.2V,
VOUT= VOUT(T)-0.2V
fOSC=1.2MHz 85 93 98
%
fOSC=3.0MHz 88 93 98
Minimum Duty Cycle DMIN VOUT=VBAT= VOUT(T)+0.5V - - 0 %
PFM Switching Current IPFM VBAT=1.5V,
RL is selected with VOUT(T), Refer to Table 1. - 165 230 mA
Efficiency
XC9142 EFFI VBAT= VOUT(T)×0.6,
RL is selected with VOUT(T), Refer to Table 1. - 86(*3) -
%
Efficiency EFFI VBAT= VOUT(T)×0.6, IOUT= 100mA - 90(*3) -
Stand-by Current ISTB VBAT=VLx=6.0V,VCE=0.0V(*1)
A,B,D,E
Type - 0.0 1.0
μA
C,F Type - 1.0 2.4
Lx SW "Pch" ON
Resistance RLXP VBAT=VLx= 6.0V, IOUT=200mA - 0.3(*2) -
Lx SW "Nch" ON
Resistance RLXN - 0.3(*3) -
Lx SW”H” Leakage
Current ILXLH VBAT=6.0V,VCE=0.0V,
VLx=6.0V(*1)
A,B,D,E
Type - 0.0 1.0 μA
C,F Type
Lx SW”L” Leakage
CurrentXC9142C/F ILXLL V
BAT=0.0V,VCE=0.0V,VLx=0.0V,VOUT=6.0V - 0.0 1.0 μA
Current Limit ILIM V
BAT= VOUT(T)-0.2V, RLx=1 <E-6> <E-7> <E-8> A
Integral Latch Time
(D,E,F Type) tLAT
VBAT= VOUT(T)-0.2V, RLx=1Ω,
Time from current limit start
to stop Lx oscillation
fOSC=1.2MHz 45 300 725 μs
fOSC=3.0MHz 25 100 365 μs
Latch Release Voltage
(D,E,F Type) VLAT_R
After the integral latch was operated,
RL is selected with VOUT(T), Refer to Table 1
VBAT=VOUT(T)-0.2V0.9V
0.9 1.2 1.5 V
Short-circuit Protection
Threshold Voltage
(D,E,F Type)
VSHORT VBAT=VOUT(T)-0.2V, RL=0Ω - VBAT(*3) - V
8/34
XC9141
/
XC9142 Series
ELECTRICAL CHARACTERISTICS (Continued)
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT
Soft-Start Time tSS
VBAT= VOUT(T)×0.6,
VOUT=VOUT(T)× 0.9,
After "H" is fed to CE,
the time by when clocks are
generated at Lx pin.
fOSC=1.2MHz 0.6 1.0 2.5
ms
fOSC=3.0MHz 0.2 0.5 1.0
CL Discharge Resistance
(A Type) RDCHG V
BAT= 3.3V,VOUT=3.3V,VCE=0.0V 100 180 400
Bypass SW Resistance
(B Type) RBSW V
BAT= 3.3V,VOUT=0.0V,VCE=0.0V 100 180 400
CE ”H” Voltage VCEH VOUT= VOUT(T)-0.15V, Applied voltage to VCE,
Voltage changes Lx to be generated. 0.80 - 6.00 V
CE ”L” Voltage VCEL VOUT= VOUT(T)-0.15V, Applied voltage to VCE,
Voltage changes Lx to“H” level. GND - 0.20 V
CE ”H” Current ICEH V
BAT=6.0V,VOUT=6.0V, VLx=6.0V, VCE=6.0V -0.1 - 0.1 μA
CE ”L” Current ICEL V
BAT=6.0V,VOUT=6.0V, VLx=6.0V, VCE=0.0V -0.1 - 0.1 μA
VOUT(T) = Target voltage
Test Conditions: unless otherwise stated, VBAT=1.5V, Vce=3.3V, Lx: OPEN, RLx=56
(*1) XC9141A/D,XC9142A/D,XC9142C/F type: VOUT=0V,
XC9141B/E,XC9142B/E type: VOUT=OPEN
(*2) Design value for the XC9142C/F type.
(*3) Designed value
Table 1. External Components RL Table
VOUT(T) RL
UNITS:V UNITS
1.8VOUT(T)<2.1 150
2.1VOUT(T)<3.1 220
3.1VOUT(T)<4.3 330
4.3VOUT(T)5.5 470
TOREX
9/34
XC9141/XC9142
Series
ELECTRICAL CHARACTERISTICS (Continued)
Table 2: SPEC Table
NOMINAL
OUTPUT
VOLTAGE
VOUT IDD ILIM
fOSC=1.2MHz fOSC=3.0MHz
<E-1> <E-2> <E-3> <E-4> <E-5> <E-6> <E-7> <E-8>
UNITS V V V mA mA A A A
VOUT(T) MIN. TYP. MAX. TYP. TYP. MIN. TYP. MAX.
1.8 1.764 1.800 1.836 0.263 0.583 - 0.96 2.30
1.9 1.862 1.900 1.938 0.279 0.614 - 1.00 2.30
2.0 1.960 2.000 2.040 0.296 0.644 - 1.04 2.30
2.1 2.058 2.100 2.142 0.312 0.675 - 1.07 2.30
2.2 2.156 2.200 2.244 0.328 0.705 - 1.11 2.30
2.3 2.254 2.300 2.346 0.344 0.736 - 1.14 2.30
2.4 2.352 2.400 2.448 0.360 0.767 - 1.17 2.30
2.5 2.450 2.500 2.550 0.376 0.797 - 1.19 2.30
2.6 2.548 2.600 2.652 0.393 0.828 - 1.22 2.30
2.7 2.646 2.700 2.754 0.409 0.858 - 1.24 2.30
2.8 2.744 2.800 2.856 0.425 0.889 - 1.26 2.30
2.9 2.842 2.900 2.958 0.441 0.919 - 1.28 2.30
3.0 2.940 3.000 3.060 0.457 0.950 0.96 1.30 2.30
3.1 3.038 3.100 3.162 0.474 0.981 0.97 1.30 2.30
3.2 3.136 3.200 3.264 0.490 1.011 0.97 1.30 2.30
3.3 3.234 3.300 3.366 0.506 1.042 0.98 1.30 2.30
3.4 3.332 3.400 3.468 0.522 1.072 0.98 1.30 2.30
3.5 3.430 3.500 3.570 0.538 1.103 0.99 1.30 2.30
3.6 3.528 3.600 3.672 0.554 1.134 0.99 1.30 2.30
3.7 3.626 3.700 3.774 0.571 1.164 1.00 1.30 2.30
3.8 3.724 3.800 3.876 0.587 1.195 1.00 1.30 2.30
3.9 3.822 3.900 3.978 0.603 1.225 1.01 1.30 2.30
4.0 3.920 4.000 4.080 0.619 1.256 1.01 1.30 2.30
4.1 4.018 4.100 4.182 0.635 1.286 1.02 1.30 2.30
4.2 4.116 4.200 4.284 0.652 1.317 1.02 1.30 2.30
4.3 4.214 4.300 4.386 0.668 1.348 1.03 1.30 2.30
4.4 4.312 4.400 4.488 0.684 1.378 1.03 1.30 2.30
4.5 4.410 4.500 4.590 0.700 1.409 1.04 1.30 2.30
4.6 4.508 4.600 4.692 0.716 1.439 1.04 1.30 2.30
4.7 4.606 4.700 4.794 0.732 1.470 1.05 1.30 2.30
4.8 4.704 4.800 4.896 0.749 1.501 1.06 1.30 2.30
4.9 4.802 4.900 4.998 0.765 1.531 1.06 1.30 2.30
5.0 4.900 5.000 5.100 0.781 1.562 1.07 1.30 2.30
5.1 4.998 5.100 5.202 0.797 1.592 1.07 1.30 2.30
5.2 5.096 5.200 5.304 0.813 1.623 1.08 1.30 2.30
5.3 5.194 5.300 5.406 0.829 1.653 1.08 1.30 2.30
5.4 5.292 5.400 5.508 0.846 1.684 1.09 1.30 2.30
5.5 5.390 5.500 5.610 0.862 1.715 1.09 1.30 2.30
83$
10/34
XC9141
/
XC9142 Series
TEST CIRCUITS
<
Circuit No.
>
BA T CE
Lx V
OUT
GND
Wave Form Measure Point
R
Lx
=56Ω
BA T CE
Lx V
OUT
GND
Wave Form Measure Point
R
Lx
=1Ω
<
Circuit No.
>
<
Circuit No.
><
Circuit No.
>
<
Circuit No.
><
Circuit No.
>
Ext erna l Co mp on en ts
 C
IN
: 10μF( ceramic )
 C
L
: 10μF( ceramic )
XC914xxxxC (f
OSC
= 1.2MHz)
 L : 4.7μH
XC914xxxxD (f
OSC
= 3.0MHz)
 L : 2.2μH
BA T CE
Lx V
OUT
GND
A
A
I
CEH
I
CEL
I
LXLL
A
BA T CE
Lx V
OUT
GND
I
ST B
A
BA T CE
Lx V
OUT
GND
I
ST B
A
BA T CE
Lx V
OUT
GND
A
I
OUT
BA T CE
Lx V
OUT
GND
A
<
Circuit No.
><
Circuit No.
>
Wave Form Measure Point
BA T CE
Lx V
OUT
GND
C
IN
A
L
R
L
C
L
A
Wave Form Measure Point
I
OUT
V
V
A
V
A
I
LXLH
A
I
LXLH
TOREX
11/34
XC9141/XC9142
Series
TYPICAL APPLICATION CIRCUIT
Typical ExamplesfOSC=1.2MHz
MANUFACTURER PRODUCT NUMBER VALUE
L
murata LQH5BPN4R7NT0L 4.7μH
TDK LTF5022T-4R7N2R0-LC 4.7μH
Coilcraft XFL4020-472MEC 4.7μH
CL(*1) murata GRM188R60J106ME84 10μF/6.3V(*2)
murata GRM188D71A106MA73 10μF/10V(*2)
Typical ExamplesfOSC=3.0MHz
MANUFACTURER PRODUCT NUMBER VALUE
L TDK LTF5022T-2R2N3R2-LC 2.2μH
Coilcraft XFL4020-222MEC 2.2μH
CL(*1) murata GRM188R60J106ME84 10μF/6.3V(*2)
murata GRM188D71A106MA73 10μF/10V(*2)
Typical ExamplesfOSC=1.2MHz, fOSC=3.0MHz
MANUFACTURER PRODUCT NUMBER VALUE
CIN(*1) murata GRM188R60J106ME84 10μF/6.3V
murata GRM188D71A106MA73 10μF/10V
(*1) Select components appropriate to the usage conditions (ambient temperature, input & output voltage).
While selecting a part, please concern about capacitance reduction and voltage durability.
(*2) In the case of fosc=1.2MHz: If VOUT(T)3.5V and the load current rises above 200mA, use two or more in a parallel connection.
In the case of fosc=3.0MHz: If VBAT2V, VOUT(T)3.5V and the load current rises above 200mA, use two or more in a parallel connection.
For the actual load capacitance, use a ceramic capacitor that ensures a capacitance equivalent to or greater than the GRM188R60J106ME84
(Murata).
If using tantalum or low ESR electrolytic capacitors please be aware that ripple voltage will be higher due to the larger ESR (Equivalent Series
Resistance) values of those types of capacitors. Please also note that the IC’s operation may become unstable with such capacitors so that
we recommend to test on the board before usage.
If using electrolytic capacitor for the CL, please connect a ceramic capacitor in parallel.
BAT CE
Lx V
OUT
GN D
C
IN
V
BA T
L
C
L
V
OUT
CE
12/34
XC9141
/
XC9142 Series
OPERATIONAL EXPLANATION
The XC9141/XC9142 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation
circuit, N-channel driver transistor, P-channel synchronous rectification switching transistor and current limiter circuit.
BLOCK DIAGRAM
The error amplifier compares the internal reference voltage with the resistors RFB1 and RFB2. Phase compensation is performed on the
resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time of the N-channel driver transistor during
PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp
wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is
continuously performed to ensure stable output voltage. The current feedback circuit monitors the N-channel driver transistors turn-on current
for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback
loop even when a low ESR capacitor, such as a ceramic capacitor, is used, ensuring stable output voltage.
<Reference voltage source, soft start function>
The reference voltage forms a reference that is used to stabilize the output voltage of the IC.
After “H” level is fed to CE pin, the reference voltage connected to the error amp increases linearly during the soft start interval. This allows the
voltage divided by the internal RFB1 and RFB2 resistors and the reference voltage to be controlled in a balanced manner, and the output voltage
rises in proportion to the rise in the reference voltage. This operation prevents rush input current and enables the output voltage to rise smoothly.
<Ramp Wave Circuit>
The ramp wave circuit determines switching frequency. The frequency is fixed internally at 1.2MHz/3.0MHz. The Clock generated is
used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits.
<Error Amplifier>
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by
the internal resistors (RFB1 and RFB2). When the FB is lower than the reference voltage, output voltage of the error amplifier increases. The
gain and frequency characteristics of the error amplifier are optimized internally.
<VDDMAX>
VDD MAX circuit compares the input voltage and the output voltage then it will select the higher one as the power supply for the IC.
<Shutdown function, load disconnection function>
The IC enters chip disable state by applying low level voltage to the CE pin. At this time, the N-channel and P-channel synchronous switching
transistors are turned OFF. With XC9142C type, the load disconnection function activates even during shutdown, and because the input voltage
VBAT and output voltage VOUT are compared to optimally control the orientation of the parasitic diode of the P-channel synchronous switching
transistor, a parallel connection with other power supplies is possible. With the XC9141 series and XC9142A/B types, the orientation of the
parasitic diode of the P-channel synchronous switching transistor is fixed at anode: VOUT and cathode: Lx during shutdown to break conduction
from the input side to the output side by the parasitic diode of the P-channel synchronous switching transistor.
<PWM/PFM control circuit>
When PFM operates, the N-channel driver transistor turns on at the timing of the signal sent from the PWM comparator. The N-channel driver
transistor remains on until the current in the coil reaches a constant current (IPFM). The PWM/PFM control circuit compares the signal sent from
the PWM comparator to the time it takes the current in the coil to reach a constant current (IPFM), and outputs the pulse that results in a longer on-
time of the N-channel driver transistor. This enables smooth switching between PWM and PFM. The XC9141 series directly outputs the signal
that is sent from the PWM comparator.
OSC
RAMP Wave
Generator
Ph ase
Compensation
Buffe r
Driver
Vref with
Soft Start
CE Controller
Lo gic
Lo ad disco nn ect
Controller
Err or Amp. PWM
comp arator C
L
Discharge
CE
V
OUT
GND
Lx
R
FB1
R
FB2
FB
PWM/PFM
Con tr oller Lo gic
BA T
V
DD
MAX
V
OUT
V
DD
C
FB
Cur r ent sen se
Byp ass S W
V
OUT
ummm “WWW“ (“News Immé‘zvmz) VD.” , ‘ ‘ ‘ CE PEP» p—®—n Wm . m A? m z? 13 F; l‘ w’? n—M l ‘ ‘ ‘ , 4 u , ‘ ‘ ‘ , { , , TOIREX
13/34
XC9141/XC9142
Series
OPERATIONAL EXPLANATION (Continued)
<Maximum current limit function, short-circuit protection>
The maximum current limit function of XC9141A/B types and XC9142A/B/C types constantly monitors the current flowing in the N-channel driver
transistor connected to the Lx pin, and if the current in the N-channel driver transistor exceeds the current limit, the function turns off the N-channel
driver transistor. (Please refer to Fig. ILIM①)
If the current flowing in the N-channel driver transistor exceeds the current limit value (equivalent to the peak coil current), the N-channel
driver transistor turns off, and remains off during the clock interval.
At the next clock, the N-channel driver transistor turns on.
If overcurrent continues, and are repeated.
Note that the current in the internal N-channel driver transistor is not the same as the output current IOUT.
The maximum current limit function of XC9141D/E and XC9142D/E/F types monitors the current that flows in the N-channel driver transistor
connected to the Lx pin, and consists of both maximum current limiting and a latch function. (Please refer to Fig.ILIM)
Short-circuit protection is a latch-stop function that activates when the output voltage drops below the short-circuit protection threshold voltage in
the overcurrent state. (Please refer to Fig.ILIM)
If the current flowing in the N-channel driver transistor exceeds the current limit value (equivalent to the peak coil current), the N-channel
driver transistor turns off, and remains off during the clock interval. In addition, an integral latch timer starts the count.
The N-channel driver transistor turns on at the next pulse. If in the overcurrent state at this time, the N-channel driver transistor turns off as
in (1). The integral latch timer continues the count.
If the count of the integral latch timer continues for 300μs typ.(@fosc=1.2MHz), a function that latches the N-channel driver transistor and P-
channel synchronous switching transistor to the off state activates.
If no longer in the overcurrent state at the next pulse, normal operation resumes. The integral latch timer stops the count.
If the output voltage VOUT drops below the short-circuit protection threshold voltage VSHORT during the count of the integral latch timer, a
function that latches the N-channel driver transistor and P-channel synchronous switching transistor in the off state activates. The short-
circuit protection threshold voltage VSHORT is a threshold voltage that is linked to the input voltage VBAT.
In the latched state, either restart by shutting down once with the CE pin, or resume operation by lowering the input voltage VBAT below the
latch release voltage VLAT_R(1.2V typ.). The soft start function operates during restart. During the soft-start interval tSS, the integral latch timer
and latch function are stopped.
When the input voltage VBAT is below the latch release voltage VLAT_R(1.2V typ.), the integral latch timer and latch function stop, but the current
limiting function continues operating.
* Note that the current in the internal N-channel driver transistor is not the same as the output current IOUT.
ILIM
ILx
VBAT
VOUT
Latch
Timer
VSHORT=VBAT
Limit<300μs Typ.
(@fosc=1.2MHz)
VLAT_R
RL
Latch
⑤⑥
Fig. ILIM
0Ω
R
L
①② ①
t
SS
V
OUT
V
OUT ( T)
V
BAT
I
Lx
CE
I
LIM
Fig. I
LIM
OumutVok-u VWW) a w 12 N mm“: mm. mm
14/34
XC9141
/
XC9142 Series
OPERATIONAL EXPLANATION (Continued)
<CL Discharge>
The XC9141A/D type and XC9142A/D type can discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which
enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the VOUT pin and the GND pin. When the IC
is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the
output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge
resistance value [RDCHG] and an output capacitor value (CL) as τ (τ = CL x RDCHG), discharge time of the output voltage after discharge via the N
channel transistor is calculated by the following formulas. However, the CL discharge resistance [RDCHG] is depends on the VBAT or VOUT. We
recommend that you fully check actual performance.
V = VOUT x e -t /
τ
or t =
τ
x ln (VOUT / V)
V : Output voltage after discharge
VOUT(T) : Target voltage
t : Discharge time
τ : CL×RDCHG
CL : Capacitance of Output capacitor (CL)
RDCHG : CL Discharge resistance, it depends on supply voltage
Output Voltage Discharge characteristics
RDCHG = 180(TYP) CL=10μF
<Bypass switch>
At shutdown, XC9141B/E type and XC9142B/E type conduct between the BAT pin and VOUT pin by means of a bypass switch. If the output is
shorted to ground, the current is limited by the resistance (RBSW) of the bypass switch.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
0 2 4 6 8 101214161820
Output Voltage: VOUT(V)
Discharge Time: t(ms)
VOUT(T) = 1.8V,VBAT=1.0V
VOUT(T) = 3.3V,VBAT=2.0V
VOUT(T) = 5.5V,VBAT=2.0V
TOIREX
15/34
XC9141/XC9142
Series
NOTE ON USE
1) For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used
beyond the absolute maximum ratings.
2) Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component
selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed,
verification with actual components should be done.
3) The DC/DC converter performance is greatly influenced by not only the ICs' characteristics, but also by those of the external components.
Care must be taken when selecting the external components. Especially for CL load capacitor, it is recommended to use type B capacitors
(JIS regulation) or X7R, X5R capacitors (EIA regulation).
4) Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause the IC
operation to become unstable, so reinforce the area around the GND pin of the IC in particular.
5) Please mount each external component as close to the IC as possible. Also, please make traces thick and short to reduce the circuit
impedance.
6) With regard to the current limiting value (ILIM), the actual coil current may at times exceed the electrical characteristics due to propagation
delay inside the product.
7) The CE pin is a CMOS input pin. Do not use with the pin open. If connecting to the BAT pin or ground pin, use the resistor which is 1M or
less. To prevent malfunctioning of the device connected to this product or the input/output due to short circuiting between pins, it is
recommended that a resistor be connected.
8) In case of connecting to another power supply as shown in below circuit diagram, please use the XC9142C/F type. Connecting another
external power supply to the output of any other type may destroy the IC.
9) The maximum current limiter controls the limit of the N-channel driver transistor by monitoring current flow. This function does not limit the
current flow of the P-channel synchronous transistor. When used with the condition VBAT > VOUT (input voltage higher than the output voltage),
the IC may be destroyed if overcurrent flows to the P-channel synchronous switching transistor due to short-circuiting of the load or other
reason.
10) When the device is used in high step-up ratio, the current limit function may not work during excessive load current. In this case, the
maximum duty cycle limits maximum current. In this event, latching may not take place on XC9141D/E types and XC9142D/E/F types (“latch
types” below) because the maximum current limit cannot be detected.
11) On latch types, some board conditions may cause release from the maximum current limit, and the integrated latch time may become longer
or latching may not take place.
12) If the status heavy load and large output capacitor is connected or the input voltage is low, the output voltage may overshoot, on XC9141A/B
types and XC9142A/B/C types(“non-latch types” below). On a latch type, the maximum current limit may be detected, and this will cause
the latch function to activate and stop operation after the soft start time elapses. In particular, note that the soft start time becomes shorter
when the IC is used at high temperatures.
13) When the step-up voltage difference is small, the XC9141 series for PWM control may oscillate intermittently.
14) When the voltage boost difference is small, the current limiting function may not operate if the on time of the N-channel driver transistor is
shorter than the propagation delay time of the current limit circuit. In this case, latching may not take place on a latch type because the
maximum current limit is not detected.
15) When an XC9142C/F type is used with VBAT > VOUT(T) (input voltage higher than the set output voltage), the P-channel synchronous switching
transistor turns off but current flows to the parasitic diode. This causes excessive heat generation in the IC. Test using the actual equipment
and note the power dissipation and heat dissipation of the package. During voltage boosting with a voltage drop due to VF of the parasitic
diode, the output voltage may become unstable. On the XC9141 series and XC9142A/B/D/E types, the P-channel synchronous switching
transistor turns on and the output voltage becomes equal to the input voltage. In environments where VBAT > VOUTT, the XC9141 series and
XC9142A/B/D/E types are recommended.
16) When input voltage and output voltage are low, integral latch function and short-circuit protection may not operate.
We recommend that you fully check actual performance.
17) TOREX places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe
design and post-aging treatment on system or equipment.
16/34
XC9141
/
XC9142
Series
NOTE ON USE (Continued)
Instructions for pattern layouts
1. In order to stabilize V
BAT
voltage level, we recommend that a by-pass capacitor C
IN
is connected as close as possible to the BAT and
GND pins.
2. Please mount each external component as close to the IC as possible.
3. Place external components as close to the IC as possible and use thick and short traces to reduce the circuit impedance.
4. Make sure that the PCB GND traces are thick and wide as possible. GND voltage level fluctuation created by high ground current at
the time of switching may cause instability of the IC.
5. The internal driver transistors bring on heat because of the I
IN
current and ON resistance of the driver transistors.
Example of pattern layout
SOT-25
PCB mounted 1st layer 2nd layer
USP-6C
PCB mounted 1st layer 2nd layer
WLP-6-01
PCB mounted 1st layer 2nd layer
6. Note on mounting (WLP-6-01)
6-1. Mount pad design should be optimized for user's conditions.
6-2. Sn-AG-Cu is used for the package terminals. If eutectic solder is used, mounting reliability is decreased. Please do not
use eutectic solder paste.
6-3. When underfill agent is used to increase interfacial bonding strength, please take enough evaluation for selection. Some
underfill materials and applied conditions may decrease bonding reliability.
6-4. The IC has exposed surface of silicon material in the top marking face and sides so that it is weak against mechanical
damages. Please take care of handling to avoid cracks and breaks.
6-5. The IC has exposed surface of silicon material in the top marking face and sides. Please use the IC with keeping the circuit
open (avoiding short-circuit from the out).
6-6. Semi-transparent resin is coated on the circuit face of the package. Please be noted that the usage under strong lights may
affects device performance.
17/34
XC9141/XC9142
Series
TYPICAL PERFORMANCE CHARACTERISTICS
(1) Efficiency vs . Output Current
L=4.7μH(LQH5BPN4R7NT0L) L=2.2μH( LQH5 BPN2R2NT0 L)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
L=4.7μH(LQH5BPN4R7NT0L) L=2.2μH(LTF5022T2R2)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
L=4.7μH(LTF5022T4R7) L=2.2μH(LTF5022T2R2)
C
IN
=10μF(GRM188R60J106M),C
L
=20μF(GRM188R60J106M x 2) C
IN
=10μF(GRM188R60J106M),C
L
=20μF(GRM188R60J106M x 2)
XC9141x50C / XC9142x50C XC9141x50D / XC9142x50D
XC9141x18C / XC9142x18C XC9141x18D / XC9142x18D
XC9141x33C / XC9142x33C XC9141x33D / XC9142x33D
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Efficiency : EFFI [%]
Output Current : I
OUT
[mA]
solid line : XC9141
dotted line : XC9142
V
BAT
=0.9V
V
BAT
=1.2V
V
BAT
=1.5V
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Efficiency : EFFI [%]
Output Current : I
OUT
[mA]
V
BAT
=0.9V
V
BAT
=1.2V
V
BAT
=1.5V
solid line : XC9141
dotted line : XC9142
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Efficiency : EFFI [%]
Output Current : I
OUT
[mA]
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Efficiency : EFFI [%]
Output Current : I
OUT
[mA]
V
BAT
=0.9V
V
BAT
=1.2V
V
BAT
=1.8V
V
BAT
=2.5V
V
BAT
=0.9V
V
BAT
=1.2V
V
BAT
=1.8V
V
BAT
=2.5V
solid line : XC9141
dotted line : XC914
2
solid line : XC9141
dotted line : XC9142
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Ef f ic ien c y : EFFI [ %]
Output Current : I
OUT
[mA]
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Efficiency : EFFI [%]
Output Current : I
OUT
[mA]
V
BAT
=1.2V
V
BAT
=1.8V
V
BAT
=2.5V
V
BAT
=3.7V
V
BAT
=4.2V
V
BAT
=1.2V
V
BAT
=1.8V
V
BAT
=2.5V
V
BAT
=3.7V
V
BAT
=4.2V
solid line : XC9141
dotted line : XC9142
solid line : XC9141
dotted line : XC9142
18/34
XC9141
/
XC9142 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs . Output Current
L=4.7μH(LQH5BPN4R7NT0L) L=2.2μH( LQH5 BPN2R2NT0 L)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
L=4.7μH(LQH5BPN4R7NT0L) L=2.2μH(LTF5022T2R2)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
L=4.7μH(LTF5022T4R7) L=2.2μH(LTF5022T2R2)
C
IN
=10μF(GRM188R60J106M),C
L
=20μF(GRM188R60J106M x 2) C
IN
=10μF(GRM188R60J106M),C
L
=20μF(GRM188R60J106M x 2)
XC9141x33C / XC9142x33C XC9141x33D / XC9142x33D
XC9141x50D / XC9142x50D XC9141x50C / XC9142x50C
XC9141x18C / XC9142x18C XC9141x18D / XC9142x18D
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
0.1 1 10 100 1000
Output Voltage : V
OUT
[V]
Output Current : I
OUT
[mA]
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
0.1 1 10 100 1000
Output Voltage : V
OUT
[V]
Output Current : I
OUT
[mA]
V
BAT
=0.9, 1.2, 1.5V V
BAT
=0.9, 1.2, 1.5V
solid line : XC9141
dotted line : XC9142
solid line : XC9141
dotted line : XC9142
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
0.1 1 10 100 1000
Output Voltage : V
OUT
[V]
Output Current : I
OUT
[mA]
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
0.1 1 10 100 1000
Output Voltage : V
OUT
[V]
Output Current : I
OUT
[mA]
V
BAT
=0.9, 1.2, 1.8, 2.5V V
BAT
=0.9, 1.2, 1.8, 2.5V
solid line : XC9141
dotted line : XC9142
solid line : XC9141
dotted line : XC9142
4.90
4.92
4.94
4.96
4.98
5.00
5.02
5.04
5.06
5.08
5.10
0.1 1 10 100 1000
Output Voltage : V
OUT
[V]
Output Current : I
OUT
[mA]
4.90
4.92
4.94
4.96
4.98
5.00
5.02
5.04
5.06
5.08
5.10
0.1 1 10 100 1000
Output Voltage : V
OUT
[V]
Output Current : I
OUT
[mA]
V
BAT
=1.2, 1.8, 2.5, 3.7V V
BAT
=1.2, 1.8, 2.5, 3.7
V
solid line : XC9141
dotted line : XC9142
solid line : XC9141
dotted line : XC9142
19/34
XC9141/XC9142
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Ripple Voltage vs. Output Current
L=4.7μH(LQH5BPN4R7NT0L) L=2.2μH( LQH5BPN2R2NT0 L)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
L=4.7μH(LQH5BPN4R7NT0L) L=2.2μH(LTF5022T2R2)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
L=4.7μH(LTF5022T4R7) L=2.2μH(LTF5022T2R2)
C
IN
=10μF(GRM188R60J106M),C
L
=20μF(GRM188R60J106M x 2) C
IN
=10μF(GRM188R60J106M),C
L
=20μF(GRM188R60J106M x 2)
XC9141x33C / XC9142x33C XC9141x33D / XC9142x33D
XC9141x50D / XC9142x50D XC9141x50C / XC9142x50C
XC9141x18D / XC9142x18DXC9141x18C / XC9142x18C
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Ripple Voltage : Vr[mV]
Output Current : I
OUT
[mA]
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Ripple Voltage : Vr[mV]
Output Current : I
OUT
[mA]
solid line : XC9141
dotted line : XC9142
solid line : XC9141
dotted line : XC9142
V
BAT
=1.5V
V
BAT
=1.2V
V
BAT
=0.9V
V
BAT
=0.9, 1.2, 1.5V
V
BAT
=1.5V
V
BAT
=1.2V
V
BAT
=0.9V
V
BAT
=0.9, 1.2, 1.5V
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Ripple V oltage : V r[mV]
Output Current : I
OUT
[mA]
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Ripple Voltage : Vr[mV]
Output Current : I
OUT
[mA]
solid line : XC9141
dotted line : XC9142
solid line : XC9141
dotted line : XC9142
V
BAT
=2.5V
V
BAT
=1.8V
V
BAT
=1.2V
V
BAT
=0.9V
V
BAT
=0.9, 1.2, 1.8, 2.5V
V
BAT
=2.5V
V
BAT
=1.8V
V
BAT
=1.2V
V
BAT
=0.9V
V
BAT
=0.9, 1.2, 1.8, 2.5V
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Ripple Voltage : Vr[mV]
OutputCurrent:I
OUT
[mA]
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
Ripple V oltage : V r[mV]
Output Current : I
OUT
[mA]
solid line : XC9141
dotted line : XC9142
solid line : XC9141
dotted line : XC9142
V
BAT
=4.2V
V
BAT
=3.7V
V
BAT
=2.5V
V
BAT
=1.8V
V
BAT
=1.2V
V
BAT
=1.2, 1.8, 2.5, 3.7, 4.2V
V
BAT
=4.2V
V
BAT
=3.7V
V
BAT
=2.5V
V
BAT
=1.8V
V
BAT
=1.2V
V
BAT
=1.2, 1.8, 2.5, 3.7, 4.2V
20/34
XC9141
/
XC9142 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Output Voltage vs. Ambient Temperature
L=4.7μH(LQH5BPN4R7NT0L) L=4.7μH( LQH5 BPN4R7NT0 L)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
(6) Supply Current vs. Output voltage
XC9141x50D / XC9142x50DXC9141x50C / XC9142x50C
XC9142x18C XC9142x18D
XC9141x18C/XC9142x18C XC9141x33C/XC9142x33C
(5) Quiescent Current vs. Output Voltage
0
5
10
15
20
25
30
35
40
123456
Quiescent Current : Iq[μA]
Output Voltage : V
OUT
[V]
0
5
10
15
20
25
30
35
40
123456
Quiescent Current : Iq[μA]
Output Voltage : V
OUT
[V]
Ta=-40
Ta= 25
Ta= 85
Ta=- 40
Ta= 25
Ta= 85
0.0
0.5
1.0
1.5
2.0
2.5
3.0
123456
Supply Current : I
DD
[mA]
Output Voltage : V
OUT
[V]
0.0
0.5
1.0
1.5
2.0
2.5
3.0
123456
Supply Current : I
DD
[mA]
Output Voltage : V
OUT
[V]
Ta=-40, 25, 85
Ta=-40
Ta= 25
Ta= 85
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
-50-25 0 255075100
Output Voltage : V
OUT
[V]
Ambient Temperature : Ta[]
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
-50-25 0 255075100
Output Voltage : V
OUT
[V]
Ambient Temperature : Ta[]
21/34
XC9141/XC9142
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(7) Stand-by Current vs. Ambient Temperature
(8) C
L
Discharge Resistance vs. Ambient Temperature (9) Bypass SW Resistance vs. Ambient Temperature
(10) Lx SW "Pch" ON Resistance vs. Ambient Temperature (11) Lx SW "Nch" ON Resistance vs. Output Voltage
XC9141A / XC9142A
XC9141E / XC9142E
XC9141D / XC9142D XC9141E / XC9142E
XC9141A / XC9142A
XC9141 / XC9142XC9141 / XC9142
XC9141B / XC9142B XC9142C / XC9142F
XC9141B / XC9142B
XC9141D / XC9142D
0.0
1.0
2.0
3.0
4.0
5.0
-50 -25 0 25 50 75 100
Stand-by Current : I
STB
[μA]
Ambient Temperature : Ta[]
0.0
1.0
2.0
3.0
4.0
5.0
-50-25 0 255075100
Stand-by Current : I
STB
[μA]
Ambient Temperature : Ta[]
V
BAT
=5.0V
V
BAT
=3.3V
V
BAT
=1.8V
V
BAT
=5.0V
V
BAT
=3.3V
V
BAT
=1.8V
0
50
100
150
200
250
300
350
400
-50-25 0 255075100
C
L
Dis c harge Res is tanc e : R
DCHG
[]
Ambient Temperature : Ta[]
0
50
100
150
200
250
300
350
400
-50-25 0 255075100
Bypass SW Resistance : R
BSW
[]
Ambient Temperature : Ta[]
V
BAT
=1.8V
V
BAT
=5.0V
V
BAT
=3.3V
V
BAT
=1.8V
V
BAT
=5.0V
V
BAT
=3.3V
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-50-25 0 255075100
Lx SW "Pch" ON Resistance : R
LXP
[]
Ambient Temperature : Ta[]
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0123456
Lx SW "Nch" ON Resistance : R
LXN
[]
Output Voltage : V
OUT
(V)
Ta=-40
Ta= 25
Ta= 85
V
BAT
=1.8V
V
BAT
=5.0V
V
BAT
=3.3V
22/34
XC9141
/
XC9142 Series
TYPICAL PERFO RMANCE CHARACTERISTICS (Continued)
(12) CE "H" Voltage vs. Ambient Temperature (13) CE "L" Voltage vs. Ambient Temperature
(14) Lx SW "H" Leakage Current vs . Ambient temperture (15) Lx SW "L" Leakage Current vs . Ambient temperture
(16) Oscillation Frequency vs. Ambient temperture
L=4.7μH(LQH5BPN4R7NT0L) L=2.2μH( LQH5 BPN2R2NT0 L)
CIN=10μF(GRM188R60J106M),CL=10μF(GRM188R60J106M) CIN=10μF(GRM188R60J106M),CL=10μF(GRM188R60J106M)
XC9141xxxD / XC9142xxxDXC9141xxxC / XC9142xxxC
XC9142C / XC9142F
XC9141B / XC9142B
XC9141E / XC9142E
XC9141D / XC9142D
XC9141 / XC9142XC9141 / XC9142
XC9141A / XC9142A
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-50-25 0 255075100
CE "H" Voltage : VCEH[V]
Ambient Temperature : Ta()
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-50-25 0 255075100
CE "L" Voltage : VCEL[V]
Ambient Temperature : Ta()
VOUT =1.0, 1.8, 3.0, 5.0V
VOUT =1.0, 1.8, 3.0, 5.0V
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
-50-25 0 255075100
Oscillation Frequency : f OS C[MHz]
Ambient Temperature : Ta[]
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
-50-25 0 255075100
Oscillation Frequency : f OSC[MHz]
Ambient Temperature : Ta[]
VOUT =5.0V
VOUT =3.3V
V
OUT
=1.8V
VOUT =5.0V
VOUT =3.3V
VOUT =1.8V
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-50-25 0 255075100
Lx SW "H" Leakage Current : ILXLH[μA]
Ambient Temperature : Ta[]
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-50-25 0 25 50 75100
Lx SW "L" Leakage Current : ILXLL[μA]
Ambient Temperature : Ta[]
VLx=6.0V
VLx=6.0V
23/34
XC9141/XC9142
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(17) Maximum Duty Cycle vs . Am bient tem perture
(18) Soft-Start Tim e vs. Ambient temperture
(19) PFM Switching Current vs. Input Voltage
L=4.7μH( LQH5B PN4 R7NT0L ) L=2. 2μH( LQH5BPN2R2NT0L)
C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M) C
IN
=10μF(GRM188R60J106M),C
L
=10μF(GRM188R60J106M)
XC9142x50D
XC9141xxxC / XC9142xxxC
XC9142x50C
XC9141xxxD / XC9142xxxD
XC9141xxxD / XC9142xxxDXC9141xxxC / XC9142xxxC
80
85
90
95
100
-50-25 0 255075100
Maximum Duty Cycle : D
MA X
[%]
Ambient Temperature : Ta[]
80
85
90
95
100
-50-25 0 255075100
Max imum Duty Cy c le : D
MA X
[%]
Ambient Temperature : Ta[]
V
OUT
=5.0V
V
OUT
=3.3V
V
OU
T
=1.8V V
OUT
=5.0V
V
OUT
=3.3V
V
OUT
=1.8V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50-25 0 25 50 75100
Soft-Start Time : t
SS
[ms]
Ambient Temperature : Ta[]
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50-25 0 255075100
Soft-Start Time : t
SS
[ms]
Ambient Temperature : Ta[]
V
OUT
=1.8, 5.0V
V
OUT
=5.0V
V
OUT
=1.8V
100
125
150
175
200
225
250
0.01.02.03.04.05.06.0
PFM Sw itching Current : I
PFM
[mA]
Input Voltage : V
BAT
[V]
100
125
150
175
200
225
250
0.0 1.0 2.0 3.0 4.0 5.0 6.0
PFM Sw itching Current : I
PFM
[mA]
Input V oltage : V
BAT
[V]
Ta= - 40
Ta= 25
Ta= 85
Ta= - 40
Ta= 25
Ta= 85
24/34
XC9141
/
XC9142 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(20) Operation Start Voltage vs. Ambient temperture (21) Operation Hold Voltage vs. Ambient temperture
(22) Current Limit vs. Ambient temperture
XC9141xxxC / XC9142xxxC XC9141xxxD / XC9142xxxD
XC9141 / XC9142 XC9141 / XC9142
0.0
0.2
0.4
0.6
0.8
1.0
-50 -25 0 25 50 75 100
Operation Start Voltage : V
ST1
[V]
Ambient Temperature : Ta[]
0.0
0.2
0.4
0.6
0.8
1.0
-50 -25 0 25 50 75 100
Operation Hold Voltage : V
HLD
[V]
Ambient Temperature : Ta[]
V
OUT
=1.8, 3.3V
V
OUT
=5.0V
V
OUT
=5.0V
V
OUT
=3.3V
V
OUT
=1.8V
1.0
1.2
1.4
1.6
1.8
2.0
2.2
-50-25 0 25 50 75100
Current Limit : I
LIM
[A]
Ambient Temperature : Ta[]
1.0
1.2
1.4
1.6
1.8
2.0
2.2
-50-25 0 25 50 75100
Current Limit : I
LIM
[A]
Ambient Temperature : Ta[]
V
OUT
=3.3V
V
OUT
=5.0V
V
OUT
=5.0V
V
T
=3.3V
TOIE'EX
25/34
XC9141/XC9142
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(23) Integral Latch Time vs. Ambient temperature
(24) Latch Release Voltage vs. Ambient temperature
200
240
280
320
360
400
50 25 0 255075100
IntegralLatchTime:tLAT[μs]
AmbientTemperature:Ta[]
V
OUT
=5.0V
V
OUT
=3.3V
0.9
1.0
1.1
1.2
1.3
1.4
1.5
50 25 0 255075100
LatchReleaseVoltage:V
LAT_R
[V]
AmbientTemperture:Ta[]
XC9141DxxC / XC9142DxxC
XC9141ExxC / XC9142ExxC
XC9142FxxC
L=4.7μH(LTF5022T4R7)
CIN=10μF(GRM188R60J106M),CL=10μF(GRM188R60J106M)
XC9141DxxC / XC9142DxxC
XC9141ExxC / XC9142ExxC
XC9142FxxC
L=4.7μH(LTF5022T4R7)
CIN=10μF(GRM188R60J106M),CL=10μF(GRM188R60J106M)
30
60
90
120
150
180
50 25 0 25 50 75 100
IntegralLatchTime:tLAT[μs]
AmbientTemperature:Ta[]
V
OUT
=5.0V
V
OUT
=3.3V
XC9141D / XC9142D
XC9141E / XC9142E
XC9142F
XCS141K1IC xcsuzxnc vw=1.2v.v,,,=1.av.L,,,=1m<=>1m vm=w.2v,vm,=1.av.lm,=lmMc=>1wm L=4JuH(LTF5022T4RI) L=1.7uH(Ln=smnR7) qanmsmenmwsmqqwrmmaansmm q mfiemaam1mflflommmm1m 93" '7 fl 9"" 99W“ 31"" 99" 7 31',“ In? ‘ :1 ‘1‘” vmmwnma: vm;zonmvlm L] , \‘lxlllwmmur ._.|y 11,. 7:1 'NJ-W ‘}~Jl;y.,‘.y._, 4.1,] ,|.. :1. X69141x330 X0914Zx330 vm:2,4v Mama 3v.{,,,:2m¢>3mm vmqjv.vm<=>3m vm,fl.w,vwé.ov.h,=mn®3wm L=4.7uHLTF5022T4R7) L=1.7uH(LTF5nean7) C.=IWF(GHMEWJ1DGM.Q=QWF(GM mmm x 2) Cm=10|lF(GHM MW106WVCL=2WRGMMIGDJ1W x 2) 3;“ 3 )°“ 27;“ )°" win 2"“ N)” Vow : MIMI/til Vaur 3 20mm In : 50mm rm . swsldiv a Lady up“ ,
26/34
XC9141
/
XC9142
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(25) Load Transient Response
xcs141 :1 an vw=1.2v.v,,,=1.av.t,,,=1m<=>1m L=2.mHLTFsom) gaumsmenmmsmqqwrmmaensmm 9‘3"" 3!)? WC" 2“" vour anemia; xcsuzxnn vn,m.2v,vm=1.av.u,,,=lm<=>1wm L=2.auu(m=snez12m) q mfiemmm1mgflommmm1m 953" 7 J 0‘3" a?" E 5"" vmzznmmau xc9141 x330 vn,:2,4v,v‘,,,4 3v.t,,,:2m¢~3mm ammufiom) qmnufismasmmmgfl DuF(GM samwwm M flu 3,9 ‘ y; 1:0 VM:ZD|IHNI&I ’mm, J'H Jfi" :“ #29141 xsun vwaa.7v.va,,=s.ov,t,,,=2m<=>am L=2.mHLTFsozztm) c_=|mF(5mmaum1nsm,q=2wF(emmm1mx 2) wiy 2w {9&2 A)?" V0." :monmd'u I“ : 50mm Tm - Suns/div 51w '« xu142x33|1 VI“:ZJV.VM
27/34
XC9141/XC9142
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(25) Load Transient Response
0.2010135 ‘lpinINDENT W. x4299 0.10:0!)5 N. o ‘H W. N Q: , S g: 7 3 DH: 7 2. 9 D, 8.. e s 33 a?»
28/34
XC9141
/
XC9142 Series
PACKAGING INFORMATION
SOT-25 (unit: mm) USP-6C (unit: mm)
WLP-6-01 (unit: mm)
13
2.9±0.2
0.4 +0.1
-0.05
1.9±0.2
0.15 +0.1
-0.05
0~0.1
2
5 4
(0.95)
1pin INDENT
(0.290)
(0.5)
1.08±0.03
3
2
6
4
5
1
2.3 .15 0, 8 2.4 %/ ‘ ‘/ 1 0.45 LNN W .md Em 1 0 TOIREX
29/34
XC9141/XC9142
Series
PACKAGING INFORMATION (Continued)
USP-6C Reference Pattern Layout (unit: mm)USP-6C Reference Metal Mask Design (unit: mm)
WLP-6-01 Reference Pattern Layout / Reference Pattern Layout detail (unit: mm)
WLP-6-01 Reference Metal Mask Design (unit: mm)
0.20
0.32
レジスト
PCB
(0.5)
resis
t
OT-25 Power Dissig on 400 1. MeasurememCondixion Reference dam
30/34
XC9141
/
XC9142 Series
SOT-25 Power Dissipation
Board Mount (Tj max = 125)
Ambient Temperature(℃) Power Dissipation PdmW Thermal Resistance (/W)
25 600
166.67
85 240
Power dissipation data for the SOT-25 is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1. Measurement Condition (Reference data)
Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free
Board: Dimensions 40 x 40 mm (1600 mm2 in one side)
Copper (Cu) traces occupy 50% of the board area
in top and back faces
Package heat-sink is tied to the copper traces
(Board of SOT-26 is used.)
Material: Glass Epoxy (FR-4)
Thickness: 1.6 mm
Through-hole: 4 x 0.8 Diameter
Evaluation Board (Unit: mm)
2. Power Dissipation vs. Ambient temperature
Pd-Ta特性グラフ
0
100
200
300
400
500
600
700
25 45 65 85 105 125
周辺温度Ta(℃)
許容損失Pd(mW)
Pd vs. Ta
Ambient Temperature Ta ()
Power Dissipation Pd (mW)
.USP-GC Power Dissigafion 1, Measuremem Condixion Reference daxa 40 0 (e ‘43 2, Power Dissigaxion vs, Ambiem xemgeraxure TOIREX
31/34
XC9141/XC9142
Series
USP-6C Power Dissipation
Power dissipation data for the USP-6C is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1. Measurement Condition (Reference data)
Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free
Board: Dimensions 40mm×40mm (1600mm2 in one side)
Copper (Cu) traces occupy 50% of the board area
in top and back faces
Package heat-sink is tied to the copper traces
Material: Glass Epoxy (FR-4)
Thickness: 1.6mm
Through-hole: 4 x 0.8 Diameter
2. Power Dissipation vs. Ambient temperature
Board Mount (Tj max=125)
Ambient Temperature () Power Dissipation Pd (mW) Thermal Resistance (/W)
25 1000
100.00
85 400
Evaluation Board (Unit: mm)
Pd-Ta
0
200
400
600
800
1000
1200
25 45 65 85 105 125
周辺温度Ta(℃)
許容損失Pd(mW
Pd vs. Ta
Power Dissipation Pd (mW)
Ambient Temperature Ta ()
E .WLFLG-01 Power Dissigation 40.0 1.Measurement Condition Reference data 2. ‘ VLP-G-Ol L4 2. Power Dissigation vs. Ambient temgerature 800 700 600 500 ”In 300 200 100 25 45 55 85 105 115
32/34
XC9141
/
XC9142
Series
WLP-6-01 Power Dissipation
Power dissipation data for the WLP-6-01 is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1. Measurement Condition (Reference data)
Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free
Board: 40mm×40mm (1600mm
2
in one side
Metal Area: 1st Metal Layer about 50%
2nd Inner Metal Layer about 50%
3rd Inner Metal Layer about 50%
4th Metal Layer about 50%
Material: Glass Epoxy (FR-4)
Thickness: 1.6mm
Through-hole: 4 x 0.8 Diameter
2. Power Dissipation vs. Ambient temperature
Board Mount (Tj max=125)
Ambient Temperature () Power Dissipation Pd (mW) Thermal Resistance (/W)
25 700
142.86
85 280
Evaluation Board (Unit: mm)
Power Dissipation Pd (mW)
Pd vs. Ta
Ambient Temperature Ta ()
El 3 o) wla‘ a; a represems produc‘s series TOREX
33/34
XC9141/XC9142
Series
MARKING RULE
represents products series
represents products series, Oscillation Frequency, and output voltage range
SERIES OSCILLATION
FREQUENCY
OUTPUT VOLTAGE RANGE [V] PRODUCT SERIES
1.83.7 3.85.5
XC9141A
1.2MHz
0 1 XC9141AxxCxx-G
XC9141B 2 3 XC9141BxxCxx-G
XC9141D 8 9 XC9141DxxCxx-G
XC9141E A B XC9141ExxCxx-G
XC9141A
3.0MHz
4 5 XC9141AxxDxx-G
XC9141B 6 7 XC9141BxxDxx-G
XC9141D R U XC9141DxxDxx-G
XC9141E C D XC9141ExxDxx-G
XC9142A
1.2MHz
A B XC9142AxxCxx-G
XC9142B C D XC9142BxxCxx-G
XC9142C E F XC9142CxxCxx-G
XC9142D V X XC9142DxxCxx-G
XC9142E E F XC9142ExxCxx-G
XC9142F H K XC9142FxxCxx-G
XC9142A
3.0MHz
H K XC9142AxxDxx-G
XC9142B L M XC9142BxxDxx-G
XC9142C N P XC9142CxxDxx-G
XC9142D Y Z XC9142DxxDxx-G
XC9142E L M XC9142ExxDxx-G
XC9142F N P XC9142FxxDxx-G
represents output voltage
MARK OUTPUT VOLTAGE [V] MARK OUTPUT VOLTAGE [V]
0 1.8 3.8 A 2.8 4.8
1 1.9 3.9 B 2.9 4.9
2 2.0 4.0 C 3.0 5.0
3 2.1 4.1 D 3.1 5.1
4 2.2 4.2 E 3.2 5.2
5 2.3 4.3 F 3.3 5.3
6 2.4 4.4 H 3.4 5.4
7 2.5 4.5 K 3.5 5.5
8 2.6 4.6 L 3.6 -
9 2.7 4.7 M 3.7 -
,represents production lot number
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.
(G, I, J, O, Q, W excluded)
* No character inversion used.
MARK PRODUCT SERIES
Y XC9141/42A/B/C/D/Sxxxxx-G
Z XC9141/42E/Fxxxxx-G
Enlar
g
e
④ ⑤
② ③
1
2
3
6
5
4
USP-6C
WLP-6-01
1 2 3
① ②
④ ⑤
6 5 4
SOT-25 (Under dot)
34/34
XC9141
/
XC9142 Series
1. The product and product specifications contained herein are subject to change without notice to
improve performance characteristics. Consult us, or our representatives before use, to confirm that
the information in this datasheet is up to date.
2. The information in this datasheet is intended to illustrate the operation and characteristics of our
products. We neither make warranties or representations with respect to the accuracy or
completeness of the information contained in this datasheet nor grant any license to any intellectual
property rights of ours or any third party concerning with the information in this datasheet.
3. Applicable export control laws and regulations should be complied and the procedures required by
such laws and regulations should also be followed, when the product or any information contained in
this datasheet is exported.
4. The product is neither intended nor warranted for use in equipment of systems which require
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss
of human life, bodily injury, serious property damage including but not limited to devices or equipment
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and
other transportation industry and 5) safety devices and safety equipment to control combustions and
explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5. Although we make continuous efforts to improve the quality and reliability of our products;
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal
injury and/or property damage resulting from such failure, customers are required to incorporate
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention
features.
6. Our products are not designed to be Radiation-resistant.
7. Please use the product listed in this datasheet within the specified ranges.
8. We assume no responsibility for damage or loss due to abnormal use.
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex
Semiconductor Ltd in writing in advance.
TOREX SEMICONDUCTOR LTD.

Products related to this Datasheet

IC REG BOOST 5V 800MA SOT25
Available Quantity: 1.896
Unit Price: 126000
IC REG BOOST 3.3V 800MA SOT25
Available Quantity: 68
Unit Price: 126000
IC REG BOOST 3.3V 350MA SOT25
Available Quantity: 0
Unit Price: 0
IC REG BOOST 5V 800MA SOT25
Available Quantity: 0
Unit Price: 126000
IC REG BOOST 5V 800MA SOT25
Available Quantity: 0
Unit Price: 0
IC REG BOOST 3.3V 800MA SOT25
Available Quantity: 0
Unit Price: 126000
IC REG BOOST 3.3V 800MA SOT25
Available Quantity: 0
Unit Price: 0
IC REG BOOST 5V 800MA SOT25
Available Quantity: 0
Unit Price: 0
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 62542
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546
0.8A SYNCHRONOUS STEP-UP DC/DC C
Available Quantity: 0
Unit Price: 53546