Datenblatt für TPL0501 von Texas Instruments

I TEXAS INSTRUMENTS VDD HA Capyngmw) 2016 Texas Insmmenns \ncorpnrmed
SPI INTERFACE WIPER
REGISTER
HA
LA
WA
VDD
GND
SCLK
DIN
CS
Copyright © 2016, Texas Instruments Incorporated
Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
Reference
Design
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
TPL0501 256-Taps, Single-Channel, Digital Potentiometer With SPI Interface
1
1 Features
1 Single-channel, 256-position resolution
• 100-kΩend-to-end resistance options
Low temperature coefficient: 35 ppm/°C
SPI-compatible serial interface
2.7-V to 5.5-V single-supply operation
±20% resistance tolerance
Operating temperature: –40°C to +125°C
ESD performance tested per JESD 22
2000-V human-body model (A114-B, Class II)
2 Applications
Pulse oximeter
Water meter
Camera
Medical sensor patches
Building security gateway
3 Description
The TPL0501 device is a single-channel, linear-taper,
digital potentiometer with 256 wiper positions. This
device can be used as a three-terminal potentiometer
or as a two-terminal rheostat. The TPL0501 is
currently offered with end-to-end resistance of
100 k. The internal registers of the TPL0501 can be
accessed using a SPI-compatible interface. The
TPL0501 has a nominal temperature coefficient of
35 ppm/°C.
The TPL0501 is available in 8-pin SOT-23 and
8-pin UQFN packages, with a specified temperature
range of –40°C to +125°C.
Device Information(1)
PART NUMBER PACKAGE BODY SIZE (NOM)
TPL0501 UQFN (8) 1.50 mm × 1.50 mm
SOT-23 (8) 1.63 mm × 2.90 mm
(1) For all available packages, see the package option addendum
at the end of the data sheet.
Simplified Schematic
l TEXAS INSTRUMENTS
2
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
Table of Contents
1 Features.................................................................. 1
2 Applications ........................................................... 1
3 Description ............................................................. 1
4 Revision History..................................................... 2
5 Pin Configuration and Functions......................... 3
6 Specifications......................................................... 3
6.1 Absolute Maximum Ratings ...................................... 3
6.2 ESD Ratings ............................................................ 3
6.3 Thermal Information.................................................. 4
6.4 Electrical Characteristics: Analog Specifications ...... 4
6.5 Electrical Characteristics: Operating Specifications.. 5
6.6 Timing Requirements................................................ 5
6.7 Typical Characteristics.............................................. 6
7 Detailed Description.............................................. 8
7.1 Overview ................................................................... 8
7.2 Functional Block Diagram......................................... 8
7.3 Feature Description................................................... 8
7.4 Device Functional Modes.......................................... 9
7.5 Programming .......................................................... 11
8 Application and Implementation ........................ 18
8.1 Application Information............................................ 18
8.2 Typical Application .................................................. 18
9 Power Supply Recommendations...................... 20
9.1 Power Sequence..................................................... 20
9.2 Wiper Position Upon Power Up .............................. 20
10 Layout................................................................... 20
10.1 Layout Guidelines ................................................. 20
10.2 Layout Example .................................................... 20
11 Device and Documentation Support ................. 21
11.1 Receiving Notification of Documentation Updates 21
11.2 Support Resources ............................................... 21
11.3 Trademarks........................................................... 21
11.4 Electrostatic Discharge Caution............................ 21
11.5 Glossary................................................................ 21
12 Mechanical, Packaging, and Orderable
Information ........................................................... 21
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision B (May 2016) to Revision C Page
Changed maximum temp range in last sentence of Description section from 85°C to 125°C (typo) ................................... 1
Changes from Revision A (September 2011) to Revision B Page
Added Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes,
Application and Implementation section, Power Supply Recommendations section, Layout section, Device and
Documentation Support section, and Mechanical, Packaging, and Orderable Information section....................................... 1
Added register map default value in Table 1........................................................................................................................ 11
Changed ratio to correct form in Ideal Resistance Values section and in Table 2; registers names for RWL and
RHW were reversed. ............................................................................................................................................................ 12
l TEXAS INSTRUMENTS
1
2
3
4
5
6
7
8
SCLK
CS
GND
DIN
H
W
VDD
L
W
L
CS
H
GND
VDD
1
2
36
8
7
DIN
SCLK 45
3
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
5 Pin Configuration and Functions
RSE Package
8-Pin UQFN
Top View
DCN Package
8-Pin SOT-23
Top View
(1) G = Ground, I = Input, O = Output, P = Power
Pin Functions
PIN TYPE(1) DESCRIPTION
NAME SOT-23 UQFN
CS 6 3 I SPI chip select (active low)
DIN 5 2 I SPI input
GND 3 4 G Ground
H 8 1 I/O High terminal
L 7 8 I/O Low terminal
SCLK 4 5 I SPI clock
VDD 2 7 P Positive supply voltage
W 1 6 I/O Wiper terminal
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(3) All voltages are with respect to ground, unless otherwise specified.
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
Supply voltage VDD to GND –0.3 7 V
VH, VL, VW–0.3 VDD + 0.3
Pulse current, IH, IL, IW±20 mA
Continuous current, IH, IL, IW(TPL0501-100) ±5 mA
Digital input voltage, VI–0.3 7 V
Operating temperature, Tj125 °C
Storage temperature, Tstg –65 150 °C
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.2 ESD Ratings
VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
l TEXAS INSTRUMENTS
4
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
(2) The package thermal impedance is calculated in accordance with JESD 51-7.
6.3 Thermal Information
THERMAL METRIC(1)
TPL0501
UNITDCN (SOT-23) RSE (UQFN)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance(2) 205.6 118.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 122.3 62.4 °C/W
RθJB Junction-to-board thermal resistance 98.9 26.8 °C/W
ψJT Junction-to-top characterization parameter 38.7 2.3 °C/W
ψJB Junction-to-board characterization parameter 97.8 26.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) VH= VDD, VL= GND, VW= not loaded
(2) Measurements between Wi and Li with Hi not connected, or between Wi and Hi with Li not connected.
6.4 Electrical Characteristics: Analog Specifications
typical values are specified at VDD = 5 V and operating temperature is 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RTOTAL End-to-end resistance Between Hi and Li terminals 80 100 120 k
VH, VLTerminal voltage 0 VDD V
RH, RLTerminal resistance 50 150
RWWiper resistance H terminal floating, VL= GND,
Force IW= (VDD/2) / RTOTAL, input code = 0x80h 25 100
CH, CLTerminal capacitance f = 1 MHz, measured to GND,
input code = 0x80h 15 pF
CWWiper capacitance f = 1 MHz, measured to GND,
input code = 0x80h 12 pF
ILKG Terminal leakage current VH= GND to VDD, VL= floating or
VL= GND to VDD, VH= floating 0.1 1 µA
TCRResistance temperature coefficient 35 ppm/°C
VOLTAGE DIVIDER MODE(1)
INL Integral non-linearity –1 1 LSB
DNL Differential non-linearity –0.5 0.5 LSB
ZSERROR Zero-scale error 0 0.5 2 LSB
FSERROR Full-scale error –2 –0.5 0 LSB
TCV Ratiometric temperature coefficient Wiper set at mid-scale 4 ppm/°C
BW Bandwidth Wiper set at mid-scale (TPL0501-100),
CLOAD= 10 pF 265 kHz
TSW Wiper settling time TPL0501-100 3 µS
THD Total harmonic distortion VH= 1 VRMS at 1 kHz, VL= VDD/2,
measurement at W 0.005%
RHEOSTAT MODE(2)
RINL Integral non-linearity –1 1 LSB
RDNL Differential non-linearity –0.5 0.5 LSB
ROFFSET Offset 0 0.5 2 LSB
RBW Bandwidth Code = 0x00h, L floating, input applied to W,
10 pF on H 60 kHz
l TEXAS INSTRUMENTS
5
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
(1) SCLK, DIN, CS Inputs
6.5 Electrical Characteristics: Operating Specifications
typical values are specified at VDD = 5 V and operating temperature is 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IDD(STBY) VDD standby current 0.3 8 µA
IIN-DIG Digital pins leakage current SCLK, DIN, CS inputs –1 1 µA
IDD(SUPPLY) VDD supply current Digital input = 1.8 V, VDD = 2.7 V 5 µA
Digital input = 1.8 V, VDD = 5 V 500
SERIAL INTERFACE(1)
VIH Input high voltage VDD = 2.7 V to 5.5 V 1.8 5.5 V
VIL Input low voltage SCLK, DIN, CS inputs 0 0.6 V
CIN Pin capacitance SCLK, DIN, CS inputs 7 10 pF
6.6 Timing Requirements
MIN NOM MAX UNIT
fSCLK SCLK frequency 25 MHz
tSCP SCLK period 40 ns
tSCH SCLK high time 20 ns
tSCL SCLK low time 20 ns
tDS DIN to SCLK set-up time 5 ns
tDH DIN hold after SCLK 5 ns
tCSS CS fall to SCLK rise setup time 15 ns
tCSW CS pulse width high 40 ns
l TEXAS INSTRUMENTS E
0.00
0.10
0.20
0.30
0.40
-40 -20 0 20 40 60 80 100 120
Temperature (C)
ZS Error (LSB)
5.5V
5.0V
2.7V
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0 32 64 96 128 160 192 224
Digital Code
RINL Error (LSB)
+125 C
+85C
+25C
-40C
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0 32 64 96 128 160 192 224
Digital Code
INL Error (LSB)
+12 5C
+85 C
+25 C
-4 0C
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0 32 64 96 128 160 192 224
Digital Code
DNL Error (LSB)
+12 5C
+85 C
+25 C
-4 0C
6
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
6.7 Typical Characteristics
Figure 1. INL vs Tap Position (Potentiometer Mode) Figure 2. DNL vs Tap Position (Potentiometer Mode)
Figure 3. INL vs Tap Position (Rheostat Mode) Figure 4. DNL vs Tap Position (Rheostat Mode)
Figure 5. End-to-End Resistance Change vs Temperature Figure 6. Zero Scale Error vs Temperature
l TEXAS INSTRUMENTS J
-30.00
-24.00
-18.00
-12.00
-6.00
0.00
1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07
Frequency (Hz)
Magnitude (dB)
100k
75k
50k
25k
12.5k
0.00
20.00
40.00
60.00
80.00
100.00
16 80 144 208
Digital Code
TC (ppm/C)
5.5V
5.0V
2.7V
-60.00
-54.00
-48.00
-42.00
-36.00
-30.00
-24.00
-18.00
-12.00
-6.00
0.00
1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07
Frequency (Hz)
Magnitude (dB)
0x80h
0x40h
0x20h
0x10h
0x08h
0x04h
0x02h
0x01h
-10.00
0.00
10.00
20.00
30.00
40.00
50.00
16 80 144 208
Digital Code
TC (ppm/C)
5.5V
5.0V
2.7V
-0.30
-0.20
-0.10
0.00
0.10
-40 -20 0 20 40 60 80 100 120
Temperature (C)
FS Error (LSB)
5.5V
5.0V
2.7V
7
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
Typical Characteristics (continued)
Figure 7. Full Scale Error vs Temperature Figure 8. Temperature Coefficient vs Tap Position
(Potentiometer Mode)
Figure 9. Temperature Coefficient vs Tap Position
(Rheostat Mode) Figure 10. Bandwidth (Potentiometer Mode)
Figure 11. Bandwidth (Rheostat Mode)
SPI INTERFACE WIPER
REGISTER
HA
LA
WA
VDD
GND
SCLK
DIN
CS
Copyright © 2016, Texas Instruments Incorporated
8
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
7 Detailed Description
7.1 Overview
The TPL0501 has a single linear-taper digital potentiometer with 256 wiper positions and an end-to-end
resistance of 100 kΩ. The potentiometer can be used as a three-terminal potentiometer or as a two-terminal
rheostat. The potentiometer can be used in either voltage divider mode or rheostat mode.
The high (H) and low (L) terminals of the TPL0501 are equivalent to the fixed terminals of a mechanical
potentiometer. The H and L terminals do not have any polarity restrictions (H can be at a higher voltage than L,
or L can be at a higher voltage than H). The position of the wiper (W) terminal is controlled by the value in the
8-bit Wiper Resistance (WR) register. When the WR register contains all zeroes (zero-scale), the wiper terminal
is closest to its L terminal. As the value of the WR register increases from all zeroes to all ones (full-scale), the
wiper moves from the position closest to the L terminal, to the position closest to the H terminal. At the same
time, the resistance between W and L increases, whereas the resistance between W and H decreases.
7.2 Functional Block Diagram
7.3 Feature Description
7.3.1 Single-Channel, 256-Position Resolution
The TPL0501 features a single independent DPOT. The DPOT is capable of being used and controlled
independently.
H
L (Floating)
W
H
L (Connected)
W
RHW RHW
RTOT RTOT
OR
( )
HW H L
D
V V V 1
256
æ ö
æ ö
= - ´ -
ç ÷
ç ÷
è ø
è ø
( )
W WL H L
D
V V V V
256
= = - ´
H
L
W
VHW
VH - VL
VWL
9
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
7.4 Device Functional Modes
7.4.1 Voltage Divider Mode
The digital potentiometer generates a voltage divider when all three terminals are used. The voltage divider at
wiper-to-H and wiper-to-L is proportional to the input voltage at H to L (see Figure 12).
Figure 12. Equivalent Circuit for Voltage Divider Mode
For example, connecting terminal H to 5 V and terminal L to ground, the output voltage at terminal W can range
from 0 V to 5 V (see Equation 1).
(1)
The voltage difference between terminal H and terminal W can also be calculated in Equation 2.
where
D is the decimal value of the wiper code. (2)
7.4.2 Rheostat Mode
The TPL0501 operates in rheostat mode when only two terminals are used as a variable resistor. The variable
resistance can either be between terminal H and terminal W or between terminal L and terminal W. The unused
terminal can be left floating or it can be tied to terminal W. The nominal resistance between terminal H and
terminal L is 10 kΩand has 256 tap points accessed by the wiper terminal. The 8-bit volatile register value is
used to determine one of the 256 possible wiper positions.
To set the resistance between terminal H and terminal W in rheostat mode, the potentiometer can be configured
in two possible ways (see Figure 13).
Figure 13. Equivalent Circuit for Rheostat Mode With Terminal H to Terminal W Resistance
‘5‘ TEXAS INSTRUMENTS
WL TOT
D
R R
256
= ´
H (Floating)
L
W
H (Connected)
L
W
RWL RWL
RTOT RTOT
OR
HW TOT
D
R R 1
256
æ ö
æ ö
= ´ -
ç ÷
ç ÷
è ø
è ø
10
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
Device Functional Modes (continued)
The general equation for determining the digitally programmed output resistance between Terminal H and
Terminal W is Equation 3:
where
• RTOT is the end-to-end resistance between terminal H and terminal L.
D is the decimal value of the wiper code (3)
Similarly, to set the resistance between terminal L and terminal W, the potentiometer can be configured in two
possible ways.
Figure 14. Equivalent Circuit for Rheostat Mode With Terminal L to Terminal W Resistance
The general equation for determining the digitally programmed output resistance between terminal L and terminal
WisEquation 4:
where
• RTOT is the end-to-end resistance between terminal H and terminal L
D is the decimal value of the wiper code. (4)
41el++l+u
SCLK
DIN
tCS0
tCSS
tDS
tSCL tSCH
tDH
tSCP tCSH
tCSW
tCS1
CS
SCLK
DIN
1 2 3 4 5 6 7 8
D7 D6 D5 D4 D3 D2 D1 D0
CS
11
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
7.5 Programming
7.5.1 SPI Digital Interface
The TPL0501 uses a 3-wire SPI compatible serial data interface. This write-only interface has three inputs: chip-
select (CS), data clock (SCLK), and data input (DIN). Drive CS low to enable the serial interface and clock data
synchronously into the shift register on each SCLK rising edge. After loading data into the shift register, drive CS
high to latch the data into the appropriate potentiometer control register and disable the serial interface. Keep CS
low during the entire serial data stream to avoid corruption of the data.
Table 1. Register Map - Default Value 0x80
BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
Figure 15. SPI Write Sequence
Figure 16. Digital Interface Timing Diagram
l TEXAS INSTRUMENTS T 5 Jr
H
L
W
RHW
RWL
RTOT
RWL = RTOT x D/256
RHW = RTOT x (1 –(D/256))
Where D = Decimal Value of Wiper Code
12
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
7.5.2 Ideal Resistance Values
Figure 17. Digital Potentiometer Measurements
Table 2 shows the ideal values for DPOT with end-to-end resistance of 100 k. The absolute values of
resistance can vary significantly but the Ratio (RWL/RHW) is extremely accurate.
Table 2. DPOT Ideal Values
STEP BINARY 100 kΩRWL/RHW
RWL (kΩ) RHW (kΩ)
0 00000000 0.00 100.00 0.00
1 00000001 0.39 99.61 0.00
2 00000010 0.78 99.22 0.01
3 00000011 1.17 98.83 0.01
4 00000100 1.56 98.44 0.02
5 00000101 1.95 98.05 0.02
6 00000110 2.34 97.66 0.02
7 00000111 2.73 97.27 0.03
8 00001000 3.13 96.88 0.03
9 00001001 3.52 96.48 0.04
10 00001010 3.91 96.09 0.04
11 00001011 4.30 95.70 0.04
12 00001100 4.69 95.31 0.05
13 00001101 5.08 94.92 0.05
14 00001110 5.47 94.53 0.06
15 00001111 5.86 94.14 0.06
16 00010000 6.25 93.75 0.07
17 00010001 6.64 93.36 0.07
18 00010010 7.03 92.97 0.08
19 00010011 7.42 92.58 0.08
20 00010100 7.81 92.19 0.08
21 00010101 8.20 91.80 0.09
22 00010110 8.59 91.41 0.09
23 00010111 8.98 91.02 0.10
24 00011000 9.38 90.63 0.10
25 00011001 9.77 90.23 0.11
26 00011010 10.16 89.84 0.11
27 00011011 10.55 89.45 0.12
28 00011100 10.94 89.06 0.12
29 00011101 11.33 88.67 0.13
30 00011110 11.72 88.28 0.13
l TEXAS INSTRUMENTS
13
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
Table 2. DPOT Ideal Values (continued)
STEP BINARY 100 kΩRWL/RHW
RWL (kΩ) RHW (kΩ)
31 00011111 12.11 87.89 0.14
32 00100000 12.50 87.50 0.14
33 00100001 12.89 87.11 0.15
34 00100010 13.28 86.72 0.15
35 00100011 13.67 86.33 0.16
36 00100100 14.06 85.94 0.16
37 00100101 14.45 85.55 0.17
38 00100110 14.84 85.16 0.17
39 00100111 15.23 84.77 0.18
40 00101000 15.63 84.38 0.19
41 00101001 16.02 83.98 0.19
42 00101010 16.41 83.59 0.20
43 00101011 16.80 83.20 0.20
44 00101100 17.19 82.81 0.21
45 00101101 17.58 82.42 0.21
46 00101110 17.97 82.03 0.22
47 00101111 18.36 81.64 0.22
48 00110000 18.75 81.25 0.23
49 00110001 19.14 80.86 0.24
50 00110010 19.53 80.47 0.24
51 00110011 19.92 80.08 0.25
52 00110100 20.31 79.69 0.25
53 00110101 20.70 79.30 0.26
54 00110110 21.09 78.91 0.27
55 00110111 21.48 78.52 0.27
56 00111000 21.88 78.13 0.28
57 00111001 22.27 77.73 0.29
58 00111010 22.66 77.34 0.29
59 00111011 23.05 76.95 0.30
60 00111100 23.44 76.56 0.31
61 00111101 23.83 76.17 0.31
62 00111110 24.22 75.78 0.32
63 00111111 24.61 75.39 0.33
64 01000000 25.00 75.00 0.33
65 01000001 25.39 74.61 0.34
66 01000010 25.78 74.22 0.35
67 01000011 26.17 73.83 0.35
68 01000100 26.56 73.44 0.36
69 01000101 26.95 73.05 0.37
70 01000110 27.34 72.66 0.38
71 01000111 27.73 72.27 0.38
72 01001000 28.13 71.88 0.39
73 01001001 28.52 71.48 0.40
74 01001010 28.91 71.09 0.41
75 01001011 29.30 70.70 0.41
76 01001100 29.69 70.31 0.42
l TEXAS INSTRUMENTS
14
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
Table 2. DPOT Ideal Values (continued)
STEP BINARY 100 kΩRWL/RHW
RWL (kΩ) RHW (kΩ)
77 01001101 30.08 69.92 0.43
78 01001110 30.47 69.53 0.44
79 01001111 30.86 69.14 0.45
80 01010000 31.25 68.75 0.45
81 01010001 31.64 68.36 0.46
82 01010010 32.03 67.97 0.47
83 01010011 32.42 67.58 0.48
84 01010100 32.81 67.19 0.49
85 01010101 33.20 66.80 0.50
86 01010110 33.59 66.41 0.51
87 01010111 33.98 66.02 0.51
88 01011000 34.38 65.63 0.52
89 01011001 34.77 65.23 0.53
90 01011010 35.16 64.84 0.54
91 01011011 35.55 64.45 0.55
92 01011100 35.94 64.06 0.56
93 01011101 36.33 63.67 0.57
94 01011110 36.72 63.28 0.58
95 01011111 37.11 62.89 0.59
96 01100000 37.50 62.50 0.60
97 01100001 37.89 62.11 0.61
98 01100010 38.28 61.72 0.62
99 01100011 38.67 61.33 0.63
100 01100100 39.06 60.94 0.64
101 01100101 39.45 60.55 0.65
102 01100110 39.84 60.16 0.66
103 01100111 40.23 59.77 0.67
104 01101000 40.63 59.38 0.68
105 01101001 41.02 58.98 0.70
106 01101010 41.41 58.59 0.71
107 01101011 41.80 58.20 0.72
108 01101100 42.19 57.81 0.73
109 01101101 42.58 57.42 0.74
110 01101110 42.97 57.03 0.75
111 01101111 43.36 56.64 0.77
112 01110000 43.75 56.25 0.78
113 01110001 44.14 55.86 0.79
114 01110010 44.53 55.47 0.80
115 01110011 44.92 55.08 0.82
116 01110100 45.31 54.69 0.83
117 01110101 45.70 54.30 0.84
118 01110110 46.09 53.91 0.86
119 01110111 46.48 53.52 0.87
120 01111000 46.88 53.13 0.88
121 01111001 47.27 52.73 0.90
122 01111010 47.66 52.34 0.91
l TEXAS INSTRUMENTS
15
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
Table 2. DPOT Ideal Values (continued)
STEP BINARY 100 kΩRWL/RHW
RWL (kΩ) RHW (kΩ)
123 01111011 48.05 51.95 0.92
124 01111100 48.44 51.56 0.94
125 01111101 48.83 51.17 0.95
126 01111110 49.22 50.78 0.97
127 01111111 49.61 50.39 0.98
128 10000000 50.00 50.00 1.00
129 10000001 50.39 49.61 1.02
130 10000010 50.78 49.22 1.03
131 10000011 51.17 48.83 1.05
132 10000100 51.56 48.44 1.06
133 10000101 51.95 48.05 1.08
134 10000110 52.34 47.66 1.10
135 10000111 52.73 47.27 1.12
136 10001000 53.13 46.88 1.13
137 10001001 53.52 46.48 1.15
138 10001010 53.91 46.09 1.17
139 10001011 54.30 45.70 1.19
140 10001100 54.69 45.31 1.21
141 10001101 55.08 44.92 1.23
142 10001110 55.47 44.53 1.25
143 10001111 55.86 44.14 1.27
144 10010000 56.25 43.75 1.29
145 10010001 56.64 43.36 1.31
146 10010010 57.03 42.97 1.33
147 10010011 57.42 42.58 1.35
148 10010100 57.81 42.19 1.37
149 10010101 58.20 41.80 1.39
150 10010110 58.59 41.41 1.42
151 10010111 58.98 41.02 1.44
152 10011000 59.38 40.63 1.46
153 10011001 59.77 40.23 1.49
154 10011010 60.16 39.84 1.51
155 10011011 60.55 39.45 1.53
156 10011100 60.94 39.06 1.56
157 10011101 61.33 38.67 1.59
158 10011110 61.72 38.28 1.61
159 10011111 62.11 37.89 1.64
160 10100000 62.50 37.50 1.67
161 10100001 62.89 37.11 1.69
162 10100010 63.28 36.72 1.72
163 10100011 63.67 36.33 1.75
164 10100100 64.06 35.94 1.78
165 10100101 64.45 35.55 1.81
166 10100110 64.84 35.16 1.84
167 10100111 65.23 34.77 1.88
168 10101000 65.63 34.38 1.91
l TEXAS INSTRUMENTS
16
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
Table 2. DPOT Ideal Values (continued)
STEP BINARY 100 kΩRWL/RHW
RWL (kΩ) RHW (kΩ)
169 10101001 66.02 33.98 1.94
170 10101010 66.41 33.59 1.98
171 10101011 66.80 33.20 2.01
172 10101100 67.19 32.81 2.05
173 10101101 67.58 32.42 2.08
174 10101110 67.97 32.03 2.12
175 10101111 68.36 31.64 2.16
176 10110000 68.75 31.25 2.20
177 10110001 69.14 30.86 2.24
178 10110010 69.53 30.47 2.28
179 10110011 69.92 30.08 2.32
180 10110100 70.31 29.69 2.37
181 10110101 70.70 29.30 2.41
182 10110110 71.09 28.91 2.46
183 10110111 71.48 28.52 2.51
184 10111000 71.88 28.13 2.56
185 10111001 72.27 27.73 2.61
186 10111010 72.66 27.34 2.66
187 10111011 73.05 26.95 2.71
188 10111100 73.44 26.56 2.76
189 10111101 73.83 26.17 2.82
190 10111110 74.22 25.78 2.88
191 10111111 74.61 25.39 2.94
192 11000000 75.00 25.00 3.00
193 11000001 75.39 24.61 3.06
194 11000010 75.78 24.22 3.13
195 11000011 76.17 23.83 3.20
196 11000100 76.56 23.44 3.27
197 11000101 76.95 23.05 3.34
198 11000110 77.34 22.66 3.41
199 11000111 77.73 22.27 3.49
200 11001000 78.13 21.88 3.57
201 11001001 78.52 21.48 3.65
202 11001010 78.91 21.09 3.74
203 11001011 79.30 20.70 3.83
204 11001100 79.69 20.31 3.92
205 11001101 80.08 19.92 4.02
206 11001110 80.47 19.53 4.12
207 11001111 80.86 19.14 4.22
208 11010000 81.25 18.75 4.33
209 11010001 81.64 18.36 4.45
210 11010010 82.03 17.97 4.57
211 11010011 82.42 17.58 4.69
212 11010100 82.81 17.19 4.82
213 11010101 83.20 16.80 4.95
214 11010110 83.59 16.41 5.10
l TEXAS INSTRUMENTS
17
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
Table 2. DPOT Ideal Values (continued)
STEP BINARY 100 kΩRWL/RHW
RWL (kΩ) RHW (kΩ)
215 11010111 83.98 16.02 5.24
216 11011000 84.38 15.63 5.40
217 11011001 84.77 15.23 5.56
218 11011010 85.16 14.84 5.74
219 11011011 85.55 14.45 5.92
220 11011100 85.94 14.06 6.11
221 11011101 86.33 13.67 6.31
222 11011110 86.72 13.28 6.53
223 11011111 87.11 12.89 6.76
224 11100000 87.50 12.50 7.00
225 11100001 87.89 12.11 7.26
226 11100010 88.28 11.72 7.53
227 11100011 88.67 11.33 7.83
228 11100100 89.06 10.94 8.14
229 11100101 89.45 10.55 8.48
230 11100110 89.84 10.16 8.85
231 11100111 90.23 9.77 9.24
232 11101000 90.63 9.38 9.67
233 11101001 91.02 8.98 10.13
234 11101010 91.41 8.59 10.64
235 11101011 91.80 8.20 11.19
236 11101100 92.19 7.81 11.80
237 11101101 92.58 7.42 12.47
238 11101110 92.97 7.03 13.22
239 11101111 93.36 6.64 14.06
240 11110000 93.75 6.25 15.00
241 11110001 94.14 5.86 16.07
242 11110010 94.53 5.47 17.29
243 11110011 94.92 5.08 18.69
244 11110100 95.31 4.69 20.33
245 11110101 95.70 4.30 22.27
246 11110110 96.09 3.91 24.60
247 11110111 96.48 3.52 27.44
248 11111000 96.88 3.13 31.00
249 11111001 97.27 2.73 35.57
250 11111010 97.66 2.34 41.67
251 11111011 98.05 1.95 50.20
252 11111100 98.44 1.56 63.00
253 11111101 98.83 1.17 84.33
254 11111110 99.22 0.78 127.00
255 11111111 99.61 0.39 255.00
l TEXAS INSTRUMENTS
Vo
Vi
10 NŸ
Vcc
TPL0501
OPA320
H
W
L
Copyright © 2016, Texas Instruments Incorporated
18
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
Many applications require using a digital potentiometer such as the TPL0501 for variable resistance or voltage
division. Typical Application shows one of these examples. In conjunction with various amplifiers, the TPL0501
can effectively be used in rheostat mode to modify the gain of an amplifier in voltage divider mode to create a
digital-to-analog converter (DAC).
8.2 Typical Application
Figure 18 shows a DAC.
Figure 18. DAC Schematic
8.2.1 Design Requirements
Table 3 lists the design parameters for this application.
Table 3. Example Parameters
DESIGN PARAMETER EXAMPLE VALUE
Input voltage 0 V to 5 V
Output voltage 0 V to 5 V
8.2.2 Detailed Design Procedure
The TPL0501 can be used in voltage divider mode with a unity-gain operational amplifier buffer to create an 8-bit
DAC. The analog output voltage of the circuit is determined by the wiper setting programmed through the SPI
Interface.
The operational amplifier is required to buffer the high-impedance output of the TPL0501 or else loading placed
on the output of the voltage divider affects the output voltage.
l TEXAS INSTRUMENTS
Code (Digital Input)
Output Voltage (V)
0 30 60 90 120 150 180 210 240 256
0
1
2
3
4
5
6
D001
5 V
2.7 V
19
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
8.2.3 Application Curve
The voltage at terminal H determines the maximum analog voltage at the output. As the TPL0501 moves from
zero-scale to full-scale, the voltage divider adjusts with relation to the voltage divider formula (see Figure 12),
resulting in the desired voltage at terminal W. The voltage at terminal W ranges linearly from 0 V to the terminal
H voltage. In this example, VIN at terminal H is 5 V and 2.7 V.
Figure 19. TPL0501 Digital Input vs OPA320 Analog Output (DAC)
I TFJms INSTRUMENTS
TPL0501
0603 Cap
0402
Cap
Via to GND Plane
Via to VDD Power Plane
W
VDD
H
L
CS
DIN
GND
SCLK
20
TPL0501-100
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
www.ti.com
Product Folder Links: TPL0501-100
Submit Documentation Feedback Copyright © 2011–2019, Texas Instruments Incorporated
9 Power Supply Recommendations
9.1 Power Sequence
Protection diodes limit the voltage compliance at terminal H, terminal L, and terminal W, making it important to
power up VDD first before applying any voltage to terminal H, terminal L, and terminal W. The diodes are forward-
biasing, meaning VDD is not powered first. The ideal power up sequence is VDD, digital inputs, and VH, VL, and
VW. The order of powering digital inputs, VH, VL, and VWdoes not matter as long as they are powered after VDD.
9.2 Wiper Position Upon Power Up
It is prudent to know that when DPOT is powered off, the impedance of the device is not known. Upon power up,
the device will return to 0x80h code because this device does not contain non-volatile memory.
10 Layout
10.1 Layout Guidelines
To maintain reliability of the device, follow common printed-circuit board (PCB) layout guidelines.
Leads to the input must be as direct as possible with a minimum conductor length.
The ground path must have low resistance and low inductance.
Use short trace-lengths to avoid excessive loading.
It is common to have a dedicated ground plane on an inner layer of the board.
Terminals that are connected to ground must have a low-impedance path to the ground plane in the form of
wide polygon pours and multiple vias.
Use bypass capacitors on power supplies and placed them as close as possible to the VDD pin.
Apply low equivalent series resistance (0.1-μF to 10-μF tantalum or electrolytic capacitors) at the supplies to
minimize transient disturbances and to filter low frequency ripple.
10.2 Layout Example
Figure 20. Example Layout for DCN Package
l TEXAS INSTRUMENTS
21
TPL0501-100
www.ti.com
SLIS136C SEPTEMBER 2011REVISED SEPTEMBER 2019
Product Folder Links: TPL0501-100
Submit Documentation FeedbackCopyright © 2011–2019, Texas Instruments Incorporated
11 Device and Documentation Support
11.1 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.
11.2 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
11.3 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
11.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
11.5 Glossary
SLYZ022 TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
I TEXAS INSTRUMENTS Sample: Sample:
PACKAGE OPTION ADDENDUM
www.ti.com 10-Dec-2020
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
TPL0501-100DCNR ACTIVE SOT-23 DCN 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 (NF5J, NF5T)
TPL0501-100RSER ACTIVE UQFN RSE 8 5000 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 7M
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
I TEXAS INSTRUMENTS
PACKAGE OPTION ADDENDUM
www.ti.com 10-Dec-2020
Addendum-Page 2
I TEXAS INSTRUMENTS REEL DIMENSIONS TAPE DIMENSIONS 7 “K0 '«m» Reel Diame|er AD Dimension deswgned to accommodate the componem wwdlh E0 Dimension desxgned to accommodate the componenl \ength KO Dimenslun deswgned to accommodate the componem thickness 7 w OveraH wwdm loe earner cape i p1 Pitch between successwe cavuy cemers f T Reel Width (W1) QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE O O O D O O D O Sprockemoles ,,,,,,,,,,, ‘ User Direcllon 0' Feed Pockel Quadrams
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TPL0501-100DCNR SOT-23 DCN 8 3000 180.0 8.4 3.23 3.17 1.37 4.0 8.0 Q3
TPL0501-100RSER UQFN RSE 8 5000 180.0 8.4 1.7 1.7 0.7 4.0 8.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 29-Aug-2019
Pack Materials-Page 1
I TEXAS INSTRUMENTS TAPE AND REEL BOX DIMENSIONS
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TPL0501-100DCNR SOT-23 DCN 8 3000 202.0 201.0 28.0
TPL0501-100RSER UQFN RSE 8 5000 202.0 201.0 28.0
PACKAGE MATERIALS INFORMATION
www.ti.com 29-Aug-2019
Pack Materials-Page 2
LAND PATTERN DATA DCN (RiPD80768) PLASTIC SM ALLi OU TLl NE PACKAGE (DlE DOWN) Example Board Luyoul Example stencil Design 0.125mm Stencil Thickness (Nate D) Q Q 540765) +1 No.35) *1 i i ,,1,,,# i,,,,,,, Example NonsSolder Mask Delined Pad Example Solder Mask oaenina (Note E) Fad Geometry Lioiosl * ‘1 All Around (0,45) mum/c o7/i3 NOTES: A, All linear dimensions are in millimetersa B. This drawing is subject to change without notice. 0. Publication IPCr7J5i is recommended tor alternate designs. D. Laser cutting apertures with trapezoidal walls and also rounding corners will alter better paste release. Customers should contact their board assembly site tor stencil design recommendations. Refer to chs7525. Eu Customers should contact their board lubrication site tar solder mask tolerances between and around signal pads, {a TEXAS INSTRUMENTS www.ti.com
--I DJ]; 5771:7774 F \x““+‘ ‘w w 5®
www.ti.com
PACKAGE OUTLINE
C
0.6
0.5
0.05
0.00
2X
1
4X 0.5
6X 0.4
0.3
4X 0.3
0.2
2X 0.45
0.35
2X 0.25
0.15
2X 0.35
0.25
B1.55
1.45 A
1.55
1.45
(0.12)
TYP
UQFN - 0.6 mm max heightRSE0008A
PLASTIC QUAD FLATPACK - NO LEAD
4220323/B 03/2018
PIN 1 INDEX AREA
SEATING PLANE
0.05 C
1
3
4
8
0.1 C A B
0.05 C
5
7
SYMM
SYMM
0.1 C A B
0.05 C
PIN 1 ID
(45 X 0.1)
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
0.1 C A B
0.05 C
SCALE 7.000
www.ti.com
EXAMPLE BOARD LAYOUT
2X (0.6)
2X (0.3)
2X
(0.2)
0.07 MIN
ALL AROUND
0.07 MAX
ALL AROUND
6X (0.55)
4X (0.25)
4X (0.5)
(1.35)
(1.3)
(R0.05) TYP
UQFN - 0.6 mm max heightRSE0008A
PLASTIC QUAD FLATPACK - NO LEAD
4220323/B 03/2018
SYMM
1
35
8
SYMM
LAND PATTERN EXAMPLE
SCALE:30X
4
7
NOTES: (continued)
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
METAL
SOLDER MASK
OPENING
SOLDER MASK DETAILS
NOT TO SCALE
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
OPENING
METAL
UNDER
SOLDER MASK
SOLDER MASK
DEFINED
www.ti.com
EXAMPLE STENCIL DESIGN
6X (0.55)
4X (0.25)
2X (0.6)
2X
(0.3)
(1.35)
(1.3)
2X (0.2)
4X (0.5)
(R0.05) TYP
UQFN - 0.6 mm max heightRSE0008A
PLASTIC QUAD FLATPACK - NO LEAD
4220323/B 03/2018
NOTES: (continued)
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
SYMM
1
3
4
5
7
8
SYMM
SOLDER PASTE EXAMPLE
BASED ON 0.1 mm THICKNESS
SCALE: 30X
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated